Экспериментальные исследования ЕГОРОВА А. А., ПЕТУНОВ С. Г., АВРАМЕНКО Е. А.

Влияние серотонина на лимфатические сосуды белой крысы. Роль эндотелия

Институт эволюционной физиологии и биохимии им. И. М. Сеченова РАН e-mail: office@jephb.ru

Реферат

Стимулирующее действие серотонина на изолированные лимфатические сосуды белой крысы опосредованно активацией 5HT2-рецепторов и α_2 -адренорецепторов. Эндотелийзависимые реакции лимфатических сосудов на серотонин связаны с угнетением синтеза NO и продуктов метаболизма арахидоновой кислоты.

Ключевые слова: лимфатические сосуды, серотонин, эндотелий, NO, арахидоновая кислота.

Egorova A. A., Petunov S. G., Avramenko E. A.

Influence of endotelium on the 5-HT effect on lymphatic vessel

Work performed at the Sechenov Institute of Evolutionary Physiology and Biochemistry e-mail: office@jephb.ru

Abstract

The stimulating effect of serotonin on isolated lymphatic vessels of white rats is mediated through 5-HT2 receptors and α_2 -adrenergic receptors. Action of serotonin is associated with endothelium and realized through the blocking of NO synthesis and arachidonic acid derivates.

Keywords: lymphatic vessels, serotonin, endothelium, NO, arachidonic acid.

Введение

Лимфатическая система как один из элементов системы регионарного кровообращения играет важную роль в обеспечении оптимальной гидратации интерстициального пространства. Выполнение этой функции зависит от состояния фазной активности лимфатических сосудов (ЛС), обеспечивающей перемещение лимфы из дистального лимфангиона в проксимальный, а также тонуса миоцитов, обуславливающего емкостные свойства лимфангиона [1]. Сократительная активность миоцитов лимфатических сосудов модулируется нервными и гуморальными факторами, к числу которых относятся биогенные амины [12]. Одним из биогенных аминов является серотонин (5-НТ), который оказывает выраженное влияние на моторику лимфатических сосудов [1,2].

Литературные данные свидетельствуют о неоднозначном влиянии серотонина на сократительную активность: стимулирующее влияние показано на лимфатических сосудах крысы, собаки, быка, свиньи и овцы, угнетение фазной активности наблюдали на лимфатических сосудах овцы, быка и морской свинки [1–3, 6, 7]. Такие реакции могут быть обусловлены стимуляцией различных рецепторных зон, расположенных как непосредственно на мембране миоцитов [7], так и на эндотелиальных клетках [2]. Тормозные реакции на серотонин могут быть связаны с изменением синтеза эндотелием ряда регулирующих факторов, в частности NO [2, 13]. Это свидетельствует о том, что к настоящему времени механизмы влияния 5НТ на лимфатические сосуды изучены недостаточно.

Цель исследования

Изучить прямые и эндотелийзависимые механизмы действия 5HT на брыжеечные лимфатические сосуды белой крысы.

Материалы и методы исследования

Эксперименты проводились на изолированных перфузируемых раствором Кребса сегментах переднего брыжеечного лимфатического протока белой крысы в рабочей камере Pressure Myograph System 110P (Danish Myo Technology). Давление на входе и выходе канюлированного сосуда составляло 6,5 см вод. ст., что соответствует гидродинамическим условиям в данном участке сосудистого русла [5]. Регистрировали продольное напряжение гладкомышечного препарата в изометрических условиях. В качестве датчика напряжения использовали механоэлектрический преобразователь установки Pressure Myograph System 110P. Тестируемые вещества, растворенные в предварительно проаэрированном растворенные в предварительно проаэрированном растворень в предварительного предварите

ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ

творе Кребса (рН 7,4), поступали в рабочую камеру посредством суперфузии. Температура в рабочей камере поддерживалась в ходе всего опыта на уровне $37,5\pm0,5$ °С. Изучали влияние 5-НТ (Sigma-Aldrich, США) в концентрациях 10-8-10-4М. Механизмы действия серотонина изучали с использованием блокатора 5-HT2-рецепторов кетансерина (Sigma-Aldrich, США) (5×10-7 М), блокатора α_3 -адренорецепторов йохимбина (Sigma-Aldrich, США) (3×10^{-6} М), донора оксида азота нитропруссида натрия (SNP) (Sigma-Aldrich, США), используемого в концентрации 1×10^{-6} М, и блокатора синтеза продуктов метаболизма арахидоновой кислоты индометацина (Sigma-Aldrich, США) в концентрации 1×10-6 М. Деэндотелизация проводилась путем пропускания воздушной струи через просвет сосуда с последующим определением эффективности удаления эндотелия согласно методике, описанной Ј. L. Fox (2002). Статистическую обработку материалов проводили с использованием **U-критерия** Манна-Уитни.

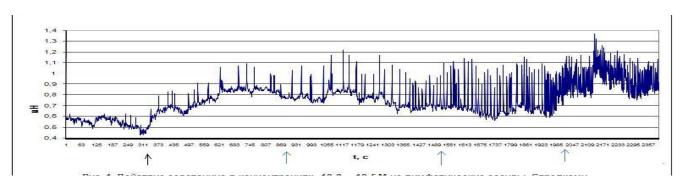
Результаты исследования

Изолированные сегменты ЛС, используемые в исследовании, обладали спонтанной фазной активностью. Средняя частота спонтанных фазных сокращений интактных ЛС составила $13,0\pm0,7$ мин⁻¹, амплитуда — $104,9\pm7,3$ мкН (n=15). Эксперименты показали, что серотонин обладает выраженным дозозависимым влиянием на моторику лимфатических сосудов. Минимальная из используемых концентраций серотонина (10^{-8} М) вызывала увеличение амплитуды на 17,5% по отношению к исходному уровню (p<0,05).

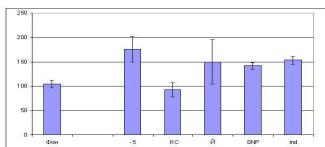
Увеличение концентрации серотонина (до 10⁻⁷, 10⁻⁶, 10⁻⁵ и 10⁻⁴ М) вызывало повышение амплитуды фазных сокращений до 23,9; 44,5; 81,1 и 63,0 % от фонового значения соответственно (р<0,05), а также приводило к увеличению тонуса сосудов на 0,3–0,45 мН от исходного значения (рис. 1).

Для исследования возможного влияния эндотелия в реализации эффекта 5-НТ на ЛС было проведена деэндотелизация сосуда, которая приводила к статистически незначимому изменению параметров спонтанной сократительной активности. Частота сокращений в этих условиях составила 15,0±0,7 мин⁻¹, что на 15 % выше, чем в интактных сосудах (р>0,05). Амплитуда сократительной активности

деэндотелизированных сосудов составила 105,8±7,3 мH, что статистически не отличалось от таковой в интактных сосудах.


Реактивность деэндотелизированных ЛС к серотонину сохранялась, однако, в отличие от интактных сосудов, происходило дозозависимое уменьшение частоты фазной активности (на 8,9–32,1 %) без достоверного изменения амплитуды и тонуса.

Использование блокатора 5-HT2-рецепторов кетансерина (КС) (5×10^{-7} М) не вызывало достоверных изменений параметров фазной активности ЛС. Стимулирующий эффект серотонина (10^{-6} М и 10^{-5} М) в этих условиях был снижен. Наблюдалось незначительное увеличение частоты сокращений ЛС (до $15,6\pm0,8$ мин⁻¹ (на 12 %) и уменьшение амплитуды фазных сокращений на $3,9\pm1,5$ и $11,4\pm2,1$ мН (на 3-11%) по отношению к фоновому уровню соответственно (p>0,05) (рис. 3,4). Тонические реакции ЛС на 5-HT (10^{-5} М) на фоне кетансерина не проявлялись.

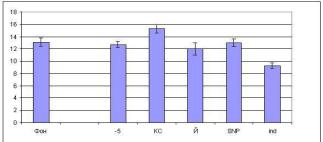

Действие блокатора α_2 -адренорецепторов йохимбина в концентрации 10^{-6} М на изолированные ЛС в течение 15 минут не вызывало статистически значимых изменений моторики лимфангионов по сравнению с фоновым уровнем активности. Наблюдалось незначительное понижение тонуса ЛС – на $0,05\pm0,07$ мН по отношению к фоновому уровню. Стимулирующее влияние 5-НТ (10^{-5} М) на ЛС в условиях блокады α_2 -адренорецепторов уменьшалось: амплитуда фазных сокращений составила $150,5\pm7,3$ мН, что на 20% меньше, чем при отдельном применении 5-НТ, частота фазной активности статистически значимо не отличалась от фоновых значений, тонус миоцитов снижался незначительно (рис. 2, 3).

Использование нитропруссида натрия уменьшало стимулирующее влияние серотонина (10^{-5}M) на ЛС (рис. 2, 3). Амплитуда фазных сокращений ЛС в этих условиях составила $142,0\pm7,5$ мH, что на 25 % меньше, чем при отдельном применении 5-HT. Статистически достоверных отклонений частоты фазной активности от фоновых не наблюдалось, тонус ЛС снижался на $0,25\pm0,05$ мH.

Действие индометацина (10-6M) также вызывало уменьшение стимулирующего влияния 5-HT (10-5M) на ЛС: наблюдалось снижение амплитуды стимулированных сокращений на 15 % и частоты на 33,3 % (рис. 2, 3). Тонические реакции при этом не изменялись.

Рис. 1. Действие серотонина в концентрациях 10^{-8} – 10^{-5} М на лимфатические сосуды. Стрелками показано применение раствора серотонина в концентрациях 10^{-8} , 10^{-7} , 10^{-6} , 10^{-5} М

Рис. 2. Действие серотонина на амплитуду фазных сокращений лимфатического сосуда в условиях применения кетансерина, йохимбина, SNP и индометацина. Концентрация 5HT - (-5); кетансерина -(KC), йохимбина $-(\check{H})$, индометацина -(ind)


Обсуждение результатов

Одна из важнейших функций лимфатической системы в регионарном кровообращении состоит в обеспечении возврата в системную циркуляцию интерстициальной жидкости и белка, профильтровавшегося в капиллярном участке сосудистого русла. Значимость этой функции возрастает при развитии воспалительных реакций, которые сопровождаются увеличением количества интерстициальной жидкости в очаге воспаления, в частности, при увеличении концентрации в интерстициальном пространстве 5НТ, выделяющегося при дегрануляции тромбоцитов [10].

Действие серотонина в системе микроциркуляции способствует повышению проницаемости капилляров, что вызывает увеличение лимфообразования и, таким образом, может стимулировать лимфоток [1, 3, 6, 7]. Кроме этого, как показали проведенные исследования, серотонин обладает выраженным дозозависимым влиянием на сократительную активность лимфатических сосудов. Подобные результаты были получены на грудном протоке и кишечном стволе крысы [1]. Из широкого спектра выявленных специфических серотониновых рецепторов некоторые из них, в частности, 5НТ 2-го, 4-го и 7-го типов, описаны в лимфатических сосудах, активация 5НТ-2рецепторов вызывает стимуляцию сократительной активности, тогда как активация 5НТ-4 и -7-рецепторов приводит к расслаблению гладких мышц ЛС [2, 3, 6 |. В проведенном исследовании стимулирующее влияние серотонина уменьшалось на фоне блокатора 5НТ-2-рецепторов кетансерина. Подобные данные получены на других объектах исследования: 5НТ оказывал дозозависимый констрикторный эффект на спонтанные сокращения изолированных брыжеечных лимфатических сосудов быка, действуя на **5**HT**-**2**-**рецепторы [7].

Стимулирующее влияние серотонина на ЛС может реализовываться посредством активации α -адренорецепторов. Такие результаты были получены в экспериментах на пренодальных лимфатических сосудах передней лапы собаки [3]. В наших экспериментах в условиях блокады α_2 -адренорецепторов йохимбином наблюдалось уменьшение стимулирующего эффекта серотонина только при его дей-

ЕГОРОВА А. А., ПЕТУНОВ С. Г., АВРАМЕНКО Е. А.

Рис. 3. Действие серотонина на частоту фазных сокращений лимфатического сосуда в условиях применения кетансерина, йохимбина, SNP и индометацина. Концентрация 5HT - (-5); кетансерина -(KC), йохимбина $-(\check{H})$, индометацина -(ind)

ствии в высоких концентрациях (10^{-5} М и выше), на основании чего можно заключить, что стимуляция α_2 -адренорецепторов может наблюдаться только в этих условиях.

Эндотелий лимфатических сосудов участвует в регуляции тонуса и сократительной фазной активности миоцитов ЛС, обеспечивая тем самым адекватный лимфоток [11]. Присутствие 5-НТ-2рецепторов показано на эндотелии артерий [8], а также изолированных ЛС морской свинки [2], что дает основание предположить участие выделяемых эндотелием факторов в реализации эффекта серотонина. В наших экспериментах показано, что реактивность ЛС к действию серотонина изменялась при их деэндотелизации: наблюдалось торможение фазной сократительной активности, причиной которого может быть активация 5НТ-4 или 7-рецепторов [2, 7]. Полученные данные свидетельствуют о наличии рецепторов к серотонину как на эндотелии ЛС, так и на гладкомышечных клетках.

Стимулирующее действие серотонина может быть связано с уменьшением выделения эндотелием факторов, тормозящих сократительную активность гладкомышечных клеток, в частности оксида азота и простагландинов. Подобные экспериментальные исследования были проведены на изолированных полосках аорты крысы [13], церебральной основной артерии крысы [4] и лимфатических сосудах морской свинки [2]. В наших экспериментах для определения роли факторов эндотелия в реализации реакций ЛС на 5HT были использованы донор оксида азота SNP и ингибитор биосинтеза простагландинов индометацин. Применение SNP на фоне действия 5HT в концентрации 10-5 М уменьшало стимулирующее влияние серотонина на ЛС, но не исключало его полностью.

Полученные данные дают основание заключить, что стимулирующее влияние 5HT связано частично с блокадой синтеза NO. Применение индометацина на фоне действия 5HT в концентрации 10^{-5} М также вызывало уменьшение стимулирующего влияния 5HT на ЛС, что свидетельствуют об участии продуктов метаболизма арахидоновой кислоты в реализации влияния 5HT.

ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ ВЫВОДЫ

- 1. Серотонин дозозависимо стимулирует сократительную активность лимфангионов кишечного ствола белой крысы.
- 2. Влияние серотонина на миоциты ЛС может реализовываться как непосредственно, так и путем стимуляции рецепторов эндотелиоцитов.
- 3. Стимулирующие реакции 5-НТ на брыжеечные ЛС крысы реализуется посредством активации 5-НТ2-рецепторов. Высокие концентрации серотонина вызывают стимуляцию α2- адренорецепторов.
- 4. Стимулирующее моторику ЛС крысы влияние серотонина связано с угнетением синтеза оксида азота и простагландинов эндотелиальными клетками.

Литература

- 1. Орлов, Р. С. Лимфатические сосуды / Р. С. Орлов. Л.: Наука, 1983. 252 с.
- 2. Chan, A. K. 5-HT decreases contractile and electrical activities in lymphatic vessels of the guinea-pig mesentery: role of 5-HT 7-receptors / A. K. Chan // Br. J. Pharmacol. 2003. № 139 (2). P. 243–254.
- 3. Dobbins, D. E. Receptor mechanisms of serotonin-induced prenodal lymphatic constriction in the canine forelimb / D. E. Dobbins // Am. J. Physiol. Heart Circ. Physiol. 1998. № 274 (2. Pt 2). P. H650–H654.
- 4. Enkhjargal, B. Characterization of vasoconstrictorinduced relaxation in the cerebral basilar artery / B. Enkhjargal // Eur. J. Pharmacol. 2010. № 637 (1–3). P. 118–123.
- 5. Gashev, A. A. Inhibition of the active lymph pump by flow in rat mesenteric lymphatics and thoracic duct / A. A. Gashev // J. Physiol. 2002. $N_{\rm P}$ 540. P. 1023–1037.
- 6. Hashimoto, S. Effects of vasoactive substances on the pig isolated hepatic lymph vessels / S. Hashimoto // J. Pharmacol. Exp. Ther. 1994. N_2 269 (2). P. 482–488.
- 7. Miyahara, H. 5-Hydroxytryptamine-2 and -4 receptors located on bovine isolated mesenteric lymphatics / H. Miyahara // J. Pharmacol. Exp. Ther. 1994. N_2 271

- (1). P. 379–385.
- 8. Rashid, M. Insurmountable antagonism of AT-1015, a 5-HT2 antagonist, on serotonin-induced endothelium-dependent relaxation in porcine coronary artery / M. Rashid // J. Pharm. Pharmacol. 2003. № 55 (6). P. 827–832.
- 9. Reddy, N. P. Lymph circulation: physiology, pharmacology, and biomechanics / N. P. Reddy // Crit. Rev. Biomed. Eng. 1986. N 14 (1). P. 45–91.
- 10. Vanhoutte, P. M. Platelet-derived serotonin, the endothelium, and cardiovascular disease / P. M. Vanhoutte // J. Cardiovasc. Pharmacol. 1991. N_2 17. Suppl. 5 P. 6—12.
- 11. Von der Weid, P. Y. Endothelium-dependent modulation of pacemaking in lymphatic vessels of the guinea-pig mesentery / P. Y. Von der Weid [et al] // J. Physiol. 1996. N_{2} 493 (Pt. 2). P. 563–575.
- 12. Von der Weid, P. Y. Lymphatic smooth muscle: the motor unit of lymph drainage / P. Y. Von der Weid // Int. J. Biochem. Cell. Biol. 2004. № 36. P. 1147–1153.
- 13. Wakabayashi, I. Involvement of nitric oxide in fading of 5-hydroxytryptamine-induced vasocontraction / I. Wakabayashi // Pharmacol. Toxicol. 1993. № 72 (3). P. 175–181.