Экспериментальные исследования

СПАСОВ А. А., К.УЧЕРЯВЕНКО А. Ф., ЧЕПУРНОВА М. В., ЛЕНСКАЯ К. В.

Антитромботическая активность гипогликемических средств

Кафедра фармакологии Волгоградского государственного медицинского университета e-mail: Farm@yLpost.ru

Реферат

Проведено сравнительное исследование антитромботической активности гипогликемических средств гликлазида и диабенола, обладающих антиагрегантной активностью, с известным антиагрегантным препаратом ацетилсалициловой кислотой на модели артериального тромбоза у крыс, индуцированного 50 % раствором хлорида железа. Все изученные соединения оказали дозо-зависимое антитромботическое действие. По проявленной активности препараты располагались в следующем порядке: диабенол > гликлазид > ацетилсалициловая кислота.

Ключевые слова: антитромботическая активность, тромбоз, агрегация тромбоцитов, диабенол, гликлазид, ацетилсалициловая кислота.

Spasov A. A., Kucheryavenko A. F., Chepurnova M. V., Lenskay K. V.

Antithrombotic activity of Diabenol and Glyclazide

Department of pharmacolody VSMU, Volgograd e-mail: Farm@vLpost.ru

Abstract

Comparative survey of antithrombotic activity of diabenol and glyclazide with acetylsalicylic acid induced by 50 % ferric chloride solution on a model of arterial thrombosis in rats was carried out. All studied combinations produced dose-dependent antithrombotic action. According to their activity drugs were ordered as following: diabenol glyclazide acetylsalicylic acid.

Keywords: antithrombotic activity, diabenol, glyclazide, acetylsalicylic acid, thrombosis, antithrombotic action.

Введение

Известно, что повышение активности тромбоцитов приводит к нарастанию тромбогенного потенциала и может являться одной из причин повышенного риска возникновения осложнений со стороны сердечно-сосудистой системы при сахарном диабете[1]. Данные осложнения сопровождаются повышенным риском возникновения тромбозов. И именно повышение агрегации тромбоцитов является ключевым моментом образования артериальных тромбов[2].

Доступные в настоящее время гипогликемические препараты, помимо сахароснижающего действия оказывают влияние на некоторые этапы в процессе активации, адгезии, высвобождения активных веществ и агрегации тромбоцитов и тем самым, заметно влияют на риск развития артериального тромбоза.[3]]. Одним из таких препаратов является гликлазид — препарат сульфонилмочевины второго поколения, который позволяет не только эффективно контролировать уровень глюкозы в крови, но и оказывает антитромбогенное влияние [4].

Однако новое понимание клеточных уровней патогенеза артериальных тромбозов ведет к разработке новых гипогликемических препаратов, которые будут более эффективно ингибировать функцию кровяных пластинок, чем это выполняют известные гипогликемические средства.

В проведенных ранее нами исследованиях, установлена способность препарата диабенол проявлять высокую антиагрегантную активность [6].

Цель исследования

Сравнительное изучение антитромботических свойств гипогликемических средств гликлазида и диабенола с известным антиагрегантным средством ацетилсалициловой кислотой на модели артериального тромбоза у крыс, индуцированных хлоридом железа.

Материал и методы исследования

В данной работе проведено сравнительное экспериментальное исследование антитромботической

ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ

активности производного сульфонилмочевины гликлазида (Servier, Франция), препарата диабенол (Дигидрохлорид 9 диэтиламиноэтил 2,3-дигидроимидазо (1,2-а)бензимидазол) (НИИ ФОХ РГМУ) [5], который прошел III фазу клинических испытаний и ацетилсалициловой кислоты («Sigma», США). Эксперименты выполнены на 55 белых нелинейных крысах-самцах массой 350-400 г, содержащихся в условиях вивария (температура 22-24 °C, относительная влажность воздуха 40-50 %) с естественным световым режимом на стандартной диете (ГОСТ Р 50258-92), соблюдая правила лабораторной практики при проведении доклинических исследований в РФ (ГОСТ 3 51000.3-96 и 1000.4-96), а также правила и Международные рекомендации Европейской конвенции по защите позвоночных животных, используемые при экспериментальных исследованиях (1997).

Изучение антитромботической активности гипогликемических средств проводили на модели артериального тромбоза у крыс, вызванного поверхностной аппликацией 50 % раствора хлорида железа (III) на сонную артерию.[7] Все вещества вводились перорально. Соединения растворяли в дистиллированной воде в объеме 2 мл. Животным контрольной группы вводился растворитель в эквивалентном объеме.

Диабенол вводился в дозах 36, 25 и 18 мг/кг, гликлазид - в дозах 100, 50 и 35,5 мг/кг, препарат сравнения ацетилсалициловая кислота в дозах — 350, 125 и 20 мг/кг.

Моделирование артериального тромбоза осуществляли спустя 2 часа после перорального введения препаратов. Подготовку животных к эксперименту осуществляли согласно методике (7). Для исследования использовали ультразвуковой компьютеризированный аппарат «Минимакс-Доплер—К» (Санкт-Петербург). Регистрацию кровотока вели до полной окклюзии сосуда (характеризуется отсутствием пульсации сонной артерии выше участка наложения тромбообразующего агента и характерного артериального звукового сигнала).

Была определена ЭК50 изученных веществ (доза, в которой изученные соединения увеличивают время окклюзии сосуда тромбом по отношению к контролю на 50 %).

Статистическая обработка результатов проводилась в электронной таблице Excell 5.0 с использованием t-критерия Стьюдента и парного критерия Вилкоксона при помощи пакета статистических программ программного обеспечения Microsoft Excell 2006.

Результаты исследования и их обсуждение

На данной модели артериального тромбоза было продемонстрировано антитромботическое действие исследованных препаратов.

В контрольной группе животных среднее время окклюзии сонной артерии составило 17,4 мин. При введении животным исследуемых веществ происходило увеличение времени наступления окклюзии. Так, время образования тромба при действии гликлазида в дозе 35,5 мг/кг составило 21 минуту, что соответствовало увеличению времени окклюзии сосуда по отношению к контролю на 20,7 % (табл.1).

Диабенол в дозе 36 мг/кг пролонгировал время образования тромба до 28,2 мин (рис.1), что увеличивало время окклюзии сосуда на 62,3 % (р<0,001). Препарат сравнения ацетилсалициловая кислота в дозе 20 мг/кг увеличивал время полной окклюзии сосуда на 16,8 %.

В дозе 50 мг/кг гликлазид увеличивал данный показатель на 35 % (p<0,05), а в дозе 100 мг/кг на 60,1 % (p<0,001). При изучении диабенола в дозах 25 и 18 мг/кг увеличение времени окклюзии сонной артерии по отношению к контролю составило 30,3 (p<0,001) и 9,5 % соответственно. Препарат сравнения ацетилсалициловая кислота при изучении в дозах 125 и 350 мг/кг увеличивала время окклюзии сосуда на 32,2 (p<0,01) и 85,8 % (p<0,001) соответственно (табл.1).

ЭК50 для диабенола составила 31,1 мг/кг, для гликлазида — 74,5 мг/кг, а для ацетилсалициловой кислоты этот показатель оказался выше и был равен 114,7 мг/кг (табл.1). Таким образом, проведенный сравнительный анализ выявил преимущество

Антитромботическая активность диабенола, гликлазида и ацетилсалициловой кислоты (ACK) на модели тромбоза сонной артерии крыс, индуцированного 50 % раствором хлорида железа. (n=5)

Таблица 1			
Название вещества	Доза, мг/кг	% увеличения времени окклюзии по отношению к контролю (М±m)	ЭК50, мг/кг
Днабенол	36	62,34±4,9***	31,15
	25	30,26±1,91***	
	18	9,51±2,71	
Гликлазид	35,5	20,68±2,34	74, 95
	50	35,0±6,9*	
	100	60,91±3,31***	
Ацетилсалициловая кислота	20	16,75±4,54	114,74
	125	32,18±3,33**	
	350	85,77±10,1***	

Достоверность к контролю * p<0,05; ** p<0,01; *** p< 0,001

антитромботического действия диабенола перед гликлазидом и преимущество двух последних перед ацетилсалициловой кислотой.

В ранее проведенных сравнительных исследованиях антиагрегантной активности диабенола, гликлазида и ацетилсалициловой кислоты in vitro была определена ЭК25 данных соединений [9]. Как видно из таблицы 2, по силе антиагрегантного действия изученные препараты располагаются в том же порядке, как и в случае с проявлением ими антитромботической активности, Наличие высокой антиагрегантной активности in vitro, свидетельствует о способности диабенола и подтверждает исследования других авторов в отношении гликлазида снижать реактивность тромбоцитов вне зависимости от уровня гликемии [4].

Кроме того, по механизму сосудистого поражения данная модель подразумевает развитие в очаге поражения реакции Хабера-Вейса (взаимодействие железа с перекисью водорода, в результате которого образуются гидроксильные радикалы). Известно, что при сахарном диабете вследствие гипергликемии развивается окислительный стресс, приводящий к изменению фосфолипидного состава мембраны тромбоцитов и повышению их функциональной активности[10]. Препараты диабенол и гликлазид, наряду с гипогликемической и антиагрегантной активностью, оказывают также антиоксидантное действие, препятствуя тем самым развитию оксидативного стресса [11,12]. Следовательно, сочетание данных видов активности у изученных препаратов будет способствовать повышению их антитромботической активности у больных сахарным диабетом.

Таким образом, сопоставление анализа литературных данных с результатами наших исследований позволяет заключить, что диабенол и гликлазид улучшают тромбогенный потенциал крови. Известно, что агрегация тромбоцитов выполняет первостепенную роль в начальных, пусковых механизмах развития артериального тромбоза. Выявленная способность

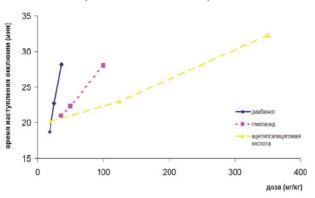


Рис. 1. Влияние гликлазида, диабенола и ацетилсалициловой кислоты на время полной окклюзии сонной артерии на модели артериального тромбоза, индуцированного аппликацией хлоридом железа. По оси абсцисс — доза препаратов (мг/кг), по оси ординат — время наступления полной окклюзии сонной артерии (мин)

изученных веществ увеличивать временя наступления окклюзии сонной артерии, по видимому, обусловлено способностью гипогликемических препаратов ингибировать процессы агрегации тромбоцитов и тем самым препятствовать последующей активации гемостаза.

Данные свойства гликлазида и диабенола способствует улучшению тромбогенного потенциала крови, что является важным в терапии больных СД с сосудистыми осложнениями.

Вывод

Гипогликемические средства гликлазид и диабенол, проявляющие антиагрегантную активность, оказывали выраженное антитромботическое действие *in vivo* на модели тромбоза, индуцированного аппликацией 50 % хлоридом железа. По активности данные соединения можно расположить в следующем порядке: диабенол > гликлазид > >ацетилсалипиловая кислота

Влияние диабенола, гликлазида, и ацетилсалициловой кислоты (ACK) на АДФ-индуцируемую (5 мкМ) агрегацию тромбоцитов (опыты in vitro) n=4 (M±m)

Таблица 2				
Название вещества	Концентрация в М	Ингибирование агрегации тромбоцитов в $\Delta\%$ по отношению к контролю ($M\pm m$)	ЭК 25, (мкМ/л)	
Днабенол	1 x 10 ⁻⁴	86,47±3,90**	2,29	
	1 x 10 ⁻⁵	46,34±4,21*		
	1 x 10 ⁻⁶	12,97±2,83		
Гликлазид	1 x 10 ⁻⁴	37,86±4,72*	23,66	
	1 x 10 ⁻⁵	13,61±2,32		
	1 x 10 ⁻⁶	3,03±0,77		
Ацетилсалициловая кислота	1 x 10 ⁻⁴	32,88±1.73*	33,5	
	1 x 10 ⁻⁵	16,07±0,89		
	1 x 10 ⁻⁶	0,47±0,47		

Достоверность к контролю * p<0,05; ** p< 0,001

ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ Литература

- 1. Watala, C. // Curr. Pharm. Des.— 2005.—№ 11(18).—P. 2331–2365.
- 2. Данилов, И. П. // Медицинские новости.—№9.— 2008.—С.17–20.
- 3. Санодзе, И. Д. // Русский медицинский журнал.— №9.—2003.—С.552–556.
- 4. Викс, Г. // Украинский медицинский журнал.— №3(29).—2002.—С. 7–11.
- 5. Спасов, А. А., Всероссийский диабетологический конгресс / В.И. Петров, В.А. Анисимова и др. // Тезисы докладов, Москва(2008), С. 336.
- 6. Ковалев, Г. В., Спасов, А. А., Анисимова, В. А. и др. 2061481 РФ, Бюлл. Открыт., №16.—1996.
 - 7. Kurz, K. D. // Thromb. Res.—1990.—

- Vol.15.—P.269-280.
- 8. Randal, J. // Arteriosclerosis, Thrombosis and Vascular Biology, 27.—2007.—P.2079–2093.
- 9. Спасов, А. А., Кучерявенко, А. Ф., Майстренко, Б. П. // Экспериментальная и клиническая фармакология T.72, N 6, C 27–29.
- 10. Jane, E. Freedman Arteriosclerosis. // Thrombosis and Vascular Biology.—2008.—28.—s11.
- 11. Signorini, A. M., Fondelli C, Renzoni E et al // Current therapeutic research .— 2002, vol.63.— №7.— p. 411–420
- 12. Чепляева, Н. И., Спасов А. А., Косолапов В. А. и др. // Бюллетень Волгоградского научного центра PAMH.—2010.—№1.—C.23—24