Оригинальные статьи

ШЕРБАНЬ Н. А.

Влияние ренин-ангиотензин-альдостероновой системы на функциональное состояние эндобронхиальной микрогемоциркуляции у больных хронической болезнью почек

Санкт-Петербургский государственный медицинский университет им. акад. И. П. Павлова e-mail: scherbann@mail.ru

Реферат

В исследовании показана возможность использования лазерной допплеровской флоуметрии у больных хронической болезнью почек для диагностики микрогемоциркуляторных расстройств в слизистой оболочке бронхов. Изучено состояние ренин-ангиотензин-альдостероновой системы радиоиммунным методом, определено ее значение в прогрессировании нарушений эндобронхиального кровотока при почечной дисфункции.

Ключевые слова: ренин-ангиотензин-альдостероновая система, эндобронхиальная микрогемоциркуляция, хроническая болезнь почек.

Shcherban N. A.

Influence of the renin-angiotensin-aldosterone system at the functional condition of endobronchial microcirculation at patients with chronic kidney disease

Saint-Petersburg Pavlov's state medical university e-mail: scherbann@mail.ru

Abstract

In research possibility of use laser Doppler flowmetry at patients with chronic kidney disease for diagnostics microcirculation frustration in a mucous membrane of the bronchial tubes was shown. The condition of the reninangiotensin-aldosterone system was studied by a radio immune method. Value of the renin-angiotensin-aldosterone system in progressing of infringements endobronchial a blood-groove at nephritic dysfunction was defined.

Keywords: the renin-angiotensin-aldosterone system, endobronchial microcirculation, chronic kidney disease.

Введение

Система микрогемоциркуляции является важным компонентом обеспечения адекватной перфузии органов и тканей, однако при длительной уремии она может претерпевать существенные изменения. Эти изменения, в первую очередь, касаются таких жизненно важных органов, как сердце, головной мозг, легкие и почки [1]. До настоящего времени остается открытым вопрос о роли микрогемоциркуляторных нарушений в прогрессировании патологических процессов в бронхолегочной системе при хронической болезни почек (ХБП). Установлено, что ведущая роль в патогенезе ХБП отводится ренин-ангиотензинальдостероновой системе (РААС), участвующей в поддержании водно-солевого гомеостаза, уровня артериального давления, обеспечивающей почечный и сердечно-сосудистый баланс и обладающей рядом специфических эффектов. Основными эффекторами РААС являются ренин, ангиотензин (АТ) и альдостерон. Доказано, что РААС оказывает значительное влияние на тканевой кровоток [5].

Цель исследования

Изучение влияния PAAC на функциональное состояние эндобронхиальной микрогемоцикуляции у больных XБП.

Материал и методы исследования

Изучение состояния микроциркуляторного русла слизистой оболочки бронхов проводилось методом лазерной допплеровской флоуметрии во время проведения фибробронхоскопии по методике, разработанной Ландышевым Ю. С., Кравец Е. С. и др. [2]. Результаты исследования обрабатывали с помощью компьютерной программы записи и обработки параметров микроциркуляции крови (LDF, версия 2.20.0). Дальнейшая обработка результатов исследования включала анализ допплерограмм, при котором определялись средние статистические величины перфузии тканей (ПМ — показатель микроциркуляции), а также вейвлет-анализ с регистрацией амплитуд эндотелиальных (Аэ), нейрогенных (Ан), миогенных (Ам), дыхательных (Ад) и сердечных колебаний (Ас).

Определение альдостерона и ангиотензина I (ATI) в сыворотке крови проводилось радиоиммунным методом с использованием стандартных наборов «Immunotech» (Чехия).

Диагноз ХБП устанавливался согласно критериям NKF-K/DOQI (National Kidney Foundation's Kidney Disease Quality Outcome Initiative, 2002): 1 группа сформирована из пациентов с сохраненной функцией почек (клиренс креатинина \geq 90 мл/мин) — 16

ОРИГИНАЛЬНЫЕ СТАТЬИ

Концентрация ангиотензина I в сыворотке крови больных ХБП										
Таблица 1										
Показатель		Контроль								
	1-я группа	2-я группа	3-я группа	4-я группа	5-я группа					
Концентрация ангиотензина I (нг/мл)	9,3±0,6 p<0,05	10,2±0,4 p<0,01	10,6±0,8 p<0,01	11,2±0,5 p<0,01	12,6±1,1 p<0,01	2,9±0,08				

Примечание: р — уровень достоверности различий между показателями основной группы и контролем (использован критерий Манна-Уитни).

человек; 2 группа (клиренс креатинина 89–60 мл/мин) — 17 человек; 3 группа (клиренс креатинина 59–30 мл/мин) — 19 человек; 4 группа (клиренс креатинина 29–15 мл/мин) — 14 человек; 5 группа (клиренс креатинина менее 15 мл/мин) — 14 пациентов. Контрольную группу составили 20 практически здоровых лиц.

Статистическая обработка данных проводилась при помощи программы Statistica v.6.0 (StatSoft Inc., 1984–2001). Полученные результаты представляли как среднее \pm ошибка средней (М \pm m). Наличие корреляционной связи между явлениями устанавливалось с помощью коэффициента ранговой корреляции Спирмена (r). Связь считали сильной, если $r \ge 0.7$; средней силы — при $0.5 \le r \le 0.7$ и слабой при r < 0.5.

Результаты исследования и их обсуждение

Повышение AT I отмечалось уже на первой стадии заболевания, что свидетельствовало об инициирующей роли PAAC в развитии патологических процессов при XБП (табл. 1).

Спастический тип нарушения микрогемоциркуляции наиболее часто определялся у пациентов с высоким содержанием AT I. Это подтверждалось наличием обратных корреляционных связей различной выраженности между концентрацией АТ I и Аэ (r_s =-0,89, p<0,01), Ас (r_s =-0,67, p<0,05), Ан (r = -0.54, p < 0.05) у больных 1-й группы. Проведенный корреляционный анализ на более поздних стадиях заболевания позволил установить обратную корреляционную зависимость между содержанием АТ I и всеми расчетными показателями ЛДФ-граммы, а именно — Аэ ($r_s=-0.87$, p<0.01), Ac ($r_s=-0.79$, p<0,05), Ah (r =-0,74, p<0,05), Ah (r =-0,69, p<0,01), Ад (r = -0.68, p<0.05), что указывало на способность AT I участвовать в регуляции сосудистого тонуса не только за счет гуморальных механизмов, обеспечивающих синтез эндотелием вазоактивных веществ, но и посредством α-адренэргических механизмов, влияющих на нейрогенный и миогенный компоненты

сосудистого тонуса. На этом этапе реализуется еще один из механизмов сосудотропного действия РААС системы — способность АТ I регулировать ток ионов кальция внутрь гладкомышечных клеток, что приводит к увеличению концентрации свободного кальция в цитоплазме и повышению их сократимости [4].

В результате проведенного исследования было выявлено, что значительное влияние на развитие микрогемоциркуляторных нарушений у больных ХБП оказывает альдостерон. Повышение содержания альдостерона у больных ХБП происходило постепенно, достигая наибольшего значения у пациентов с 4–5 стадиями заболевания (табл. 2).

Снижение показателей микрогемоциркуляции при повышенном уровне альдостерона наблюдалось преимущественно у пациентов на 3-5 стадиях ХБП, что подтверждалось отрицательными корреляционными связями с ПМ (rs=-0.84, p<0.01), Аэ (rs=-0.73, p<0,05), Aн (rs=-0,71, p<0,05), Aм (rs=-0,76, p<0,05) и объяснялось способностью альдостерона повышать проницаемость клеточных мембран для натрия и воды, приводить к набуханию сосудистой стенки и сужению просвета артериол, повышению общего периферического сопротивления сосудов и нарушению притока крови в микрогемоциркуляторное русло. Кроме того, повышение концентрации натрия в сосудистой стенке могло способствовать увеличению чувствительности находящихся в ней нервных окончаний к циркулирующим в плазме крови прессорным веществам — AT II, катехоламинам, даже при незначительном возрастании их концентрации [3].

У пациентов с застойными явлениями в легких и признаками сердечной недостаточности была установлена тесная корреляционная связь между уровнем альдостерона и показателями ЛДФ-граммы, отражающими деятельность пассивных факторов регуляции микрокровотока — Ас (rs=-0,83, p<0,01), Ад (rs=-0,79, p<0,01), которая могла быть обусловлена способностью альдостерона инициировать водно-электролитные расстройства, приводящие

Концентрация альдостерона в сыворотке крови больных ХБП										
Таблица 2										
Показатель		Контроль								
	1-я группа	2-я группа	3-я группа	4-я группа	5-я группа					
Концентрация альдостерона (пг/мл)	91,4±1,6 p>0,05	98,3±1,5 p>0,05	108,9±1,9 p>0,05	124,2±2,1 p<0,05	173,8±2,4 p<0,01	89,4±0,6				

ЩЕРБАНЬ Н. А.

к развитию легочно-сердечной недостаточности и оказывающие негативное влияние на пассивные факторы регуляции микроциркуляции.

Выводы

1. На ранних стадиях ХБП гиперактивация РААС приводит к расстройству эндобронхиальной микрогемоциркуляции по спастическому типу, реализующемуся за счет нарушения эндотелиального,

нейрогенного и миогенного механизмов регуляции сосудистого тонуса.

2. Значительное влияние на нарушение эндобронхиального кровотока у больных с 3—5 стадиями ХБП оказывает альдостерон, приводящий к водноэлектролитному дисбалансу, повышению сосудистого тонуса, сокращению притока крови в микрогемоциркуляторное русло и нарушению венозного

Литература

- 1. Бабак, О. Я. Роль ренин-ангиотензиновой системы в ремоделировании сердца и сосудов / О. Я. Бабак, Н. А. Кравченко // Украин. терапевт. журн. 2005. № 2. С. 89–97.
- 2. Ландышев, Ю. С. Способ диагностики микроциркуляторных расстройств в слизистой оболочке бронхов у больных бронхиальной астмой: пат. № 2281684 РФ/Ю. С. Ландышев, Н. П. Красавина, Е. С. Кравец [и др.]. — МПК7 A61B1/267. — Бюл. 23 (2), 2006. — С. 4.
- Лондон, Ж. М. Ремоделирование артерий и артериальное давление у больных с уремией / Ж. М. Лондон // Нефрология и диализ. 2000. № 2 (3). С. 124–130.
 Паунова, С. С. Ангиотензин II современное
- 4. Паунова, С. С. Ангиотензин II современное представление о патогенезе нефросклероза / С. С. Паунова // Нефрология и диализ. 2003. № 5 (4). С. 353–356.