Clinical and experimental parallels in the assessment of microcirculatory dysfunctions of the lungs in thoracic radiology
https://doi.org/10.24884/1682-6655-2024-23-1-6-15
Abstract
Introduction. Chronic obstructive disease (COPD) and thromboembolism of the branches of the pulmonary artery or pulmonary embolism (PE) remain the most common and socially significant lung diseases. Circulatory disorders in these pathologies play a critical role in the development of the disease. Radiation techniques, such as computed tomography/angiography and single-photon emission computed tomography (SPECT), are the leading ones in recognizing changes in the lung parenchyma and vessels. Many questions can be successfully solved experimentally. The main radiation techniques used to study the vascular bed when modeling lung diseases in experimental animals are microangiography and perfusion scintigraphy. Purpose. To show the capabilities of radiation diagnostic methods for identifying vascular disorders in COPD and PE in experiments and clinical manifestations. Material and methods. A clinical and experimental comparison of pulmonary circulation changes during COPD and PE was carried out based on the results of perfusion scintigraphy/SPECT in 55 rats with simulated COPD- like condition and 622 patients with COPD of varying severity, as well as 58 rats with simulated PE and 180 patients with PE. Results. When modelling lung diseases (PE and COPD), the results similar to blood circulation and structural changes in the lung parenchyma in patients with these nosologies were obtained. In COPD, changes in the lung parenchyma correlated with disturbances in functional indicators (microcirculation, PaO2, PaCO2, DSLzd, DLco/VA, SDPA) and increased levels of endothelin-1 (r=0.72) and endothelial growth factor (VEGF-A) (r=0.79). Analysis of experimental and clinical data on PE showed the importance of identifying minor forms of thromboembolism. Conclusion. 1. Persistent microcirculatory dysfunctions in the pulmonary circulation play an important role in the pathogenesis of chronic broncho-obstructive pathology. After just 7 days, initial signs of emphysema can be detected in the ischemic area of the lung tissue, and by the 60th day typical bullous cavities can be detected. 2. In the chronic course of minor forms of thromboembolism of small branches of the pulmonary artery, local emphysema is formed. 3. At the early stages of COPD formation, regional zones of emphysematous restructuring of the lung tissue with a predominance of ventilation dysfunctions and zones of «compressive ischemia» with prevailing vascular disorders are formed. As the pathological process progresses, the ischemia factor acquires independent significance in the pathogenesis of the disease.
About the Authors
V. P. ZolotnitskayaRussian Federation
Zolotnitskaya Valentina P. – MD, Professor, Head, Department of Radiology and Radiation medicine
6-8, L’va Tolstogo str., Saint Petersburg, 197022
V. I. Amosov
Russian Federation
Amosov Viktor I. – PhD, Professor, Head of radiology and radiation medicine department
6-8, L’va Tolstogo str., Saint Petersburg, 197022
T. D. Vlasov
Russian Federation
Vlasov Timur D. – mD, Professor, Head, Department of Pathological Physiology with the Course of Clinical Pathophysiology
6-8, L’va Tolstogo str., Saint Petersburg, 197022
References
1. Yip KP, Stockley RA, Sapey E. Catching “Early” COPD – The Diagnostic Conundrum. Int J Chron Obstruct Pulmon Dis. 2021;16:957-968. Doi: 10.2147/COPD.S296842.
2. Burny PG, Patel J, Newson R, Minelli S, Nagavy M. Global and regional trends in COPD mortality, 1990-2010. Eur Respir J. 2015;45(5):1239-1247. Doi: 10.1183/09031936.00142414.
3. Lu HH, Zeng HH, Chen Y. Chronic obstructive pulmonary disease: A new perspective. Chronic Dis Transl Med. 2021;7(2):79-87. Doi: 10.1016/j.cdtm.2021.02.003.
4. Верткин А.Л., Грицанчук А.М. Тромбоэмболия легочной артерии: эпидемия, о которой все молчат // Архивъ внутр. мед. – 2014. – № 1. – С. 33–39. [Vertkin AL, Gri tsanchuk AM. Pulmonary embolism: an epidemic that everyone is silent about. Archive of Internal Medicine. 2014;(1):33-39. (In Russ.)]. Doi: 10.20514/2226-6704-2014-0-1-33-39.
5. Галкин В.В., Борисова Н.К., Хроменков В.И. Ангиопульмонография и сканирование легких при экспериментальной легочной тромбоэмболии // Эксперим. хир. и анестезиол. – 1972. – Т. 1. – С. 23–24. [Galkin VV, Borisova NK, Khromenkov VI. Angiopulmonography and lung scanning in experimental pulmonary thromboembolism. Experim Surg Anesthesiol. 1972;1:23-24. (In Russ.)].
6. Walter G, Wolfe WG, David G et al. A study of changes in the roentgenogram of the cheat in experimental pulmonary embolism. Surg Gynecol Obstet. 1968;127(3):492-498.
7. Jandik J, Endrys J, Rehulova E et al. Bronchial arteries in experimental pulmonary infarction: angiographic and morphometric study. Card Vasc. 1993;27(6):1076-1083. Doi: 10.1093/cvr/27.6.1076.
8. Taplin GV, Johnson DE, Dore EK, Kaplan HS. Lung photoscans with macroaggregates of human serum radioalbumin: experimental basis and initial clinical trials. Health Phys. 1964;10:1219-1227. Doi: 10.1097/00004032-196412000-00043.
9. Wolfe WG, Sabiston DC. Pulmonary embolism. Аnesthesiology. 1969;30(2):252. Doi: 10.1097/00000542-196902000-00031.
10. Sabiston DJ, Wolfe WG. Experimental and clinical observations on the natural history of pulmonary embolism. Ann Surg. 1968;168(1):1-15. Doi: 10.1097/00000658-196807000-00001.
11. Лещинская О.В. / Перфузионная однофотонная эмиссионная компьютерная томография, совмещенная с компьютерно-томографической ангиопульмонографией, в диагностике тромбоэмболии легочной артерии / Лещинская О.В., Кудряшова Н.Е., Мигунова Е.В. и др. // Роль больниц скорой помощи и научно-исследовательских институтов в снижении предотвратимой смертности среди населения: материалы 4-го съезда вра чей неотложной медицины с междунар. участием (Москва, 19–20 октября 2018 г.). – М.: МОО НПО ВНМ, 2018. – С. 179–180. [Leshchinskaya OV, Kudryashova NE, Migunova EV, Kungurtsev EV, Nikitina OV, Sinyakova OG, Nefedova GA, Kokov ML. Perfusion single-photon emission computed tomography combined with computed tomographic angiopulmonography in the diagnosis of pulmonary embolism. In the collection. The role of emergency hospitals and research institutes in reducing preventable mortality among the population. Proceedings of the 4th Congress of Emergency Medicine Physicians with international participation (Moscow, 19–20 October 2018). Moscow, 2018:179-180. (In Russ.)].
12. Завадовский К.В., Гуля М.О. Хроническая постэмболическая легочная гипертензия: возможности радионуклидных методов диагностики // Регионарное кровообращение и микроциркуляция. – 2019. – Т. 18, № 1. – С. 17–23. [Zavadovsky КV, Gulya МО. Chronic postembolic pulmonary embolism: the role of radionuclide imaging. Regional blood circulation and microcirculation. 2019;18(1):17-23. (In Russ.)]. Doi: 10.24884/1682-6655-2019-18-1-17-23.
13. Лукина О.В. Лучевая диагностика тромбоэмболии легких у больных с эмфизематозным фенотипом хронической обструктивной болезни легких // Регионарное кровообращение и микроциркуляция. – 2013. – Т. 12, № 1. – С. 65–70. [Lukina OV. Radiologic diagnosis of pulmonary embolism in patients with emphysematous phenotype of chronic obstructive pulmonary disease. Regional blood circulation and microcirculation. 2013;12(1):65-70. (In Russ.)]. Doi: 10.24884/1682-6655-2013-12-1-65-70.
14. Aleva FE, Voets LWLM, Simons SO, de Mast Q, van der Ven AJAM, Heijdra YF. Prevalence and Localization of Pulmonary Embolism in Unexplained Acute Exacerbations of COPD: A systematic review and meta-analysis. Chest. 2016; 151(3):544-554. Doi: 10.1016/j.chest.2016.07.034.
15. Bertoletti L, Couturaud F, Sanchez O, Jimenez D. Pulmonary Embolism and Chronic Obstructive Pulmonary Disease. Semin Thromb Hemost. 2023:49(8):809-815. Doi: 10.1055/s-0042-1756190.
16. Yang R, Liu G, Deng S. Pulmonary embolism in chronic obstructive pulmonary disease. Chronic Dis Transl Med. 2021; 7(3):149-156. Doi: 10.1016/j.cdtm.2021.04.001.
17. Bertoletti L, Coutureau F, Sanchez O, Jimenez D. Pulmonary embolism and chronic obstructive pulmonary di se ase. Semin Thromb Hemost. 2023;49(8):809-815. Doi: 10.1055/s-0042-1756190.
18. Jackson K, Aujayeb A. Pleural effusion in pulmonary embolism: a single center experience. Treatment. 2020;12(12): e11942. Doi: 10.7759/cureus.11942.
19. Прогнозирование и лечение тромбоэмболии легочной артерии / Бабушкина Г., Губаева А., Якупова Д., Пилюшин В. // Врач. – 2019. – Т. 30, № 9. – С. 45–47. [Babushkina G, Gubaeva A, Yakupova D, Pilyushin V. Prediction and treatment of pulmonary embolism. Doctor. 2019;30(9):45-47. (In Russ.)]. Doi: 10.29296/25877305-2019-09-08.
20. Эккардт Э.В. Значение биомеханики дыхания и компьютерной томографии высокого разрешения в диагностике бронхообструктивного синдрома // Бюлл. Сиб. Мед. – 2010. – Т. 9, № 3. – С. 106–109. [Eckardt EV. The importance of respiratory biomechanics and high-resolution computed tomography in the diagnosis of broncho-obstructive syndrome. Bull Sib Med. 2010;9(3):106-109. (In Russ.)]. Doi: 10.20538/1682-0363-2010-3-106-109.
Review
For citations:
Zolotnitskaya V.P., Amosov V.I., Vlasov T.D. Clinical and experimental parallels in the assessment of microcirculatory dysfunctions of the lungs in thoracic radiology. Regional blood circulation and microcirculation. 2024;23(1):6-15. (In Russ.) https://doi.org/10.24884/1682-6655-2024-23-1-6-15