Equivalent density of calcium deposits – a new diagnostic pattern for atherocalcinosis
https://doi.org/10.24884/1682-6655-2024-23-1-26-36
Abstract
Objective. To assess the density of the calcified substrate of atherosclerotic plaques of the carotid arteries using data from the computed tomography of patients with multifocal atherosclerosis. Material and methods. In 251 patients with verified atherosclerosis of the coronary and carotid arteries, with a high prevalence of angina pectoris, a history of myocardial infarction and modifiable cardiovascular risk factors, multislice computed tomography (MSCT) of the carotid arteries was performed to assess the calcium index and determine the equivalent density of calcium deposits (EDCD). A morphological sub-study of the material from the removed atherosclerotic plaques was carried out using scanning electron microscopy (SEM) in 12 patients. Results. According to the MSCT data, we identified 5 main types of calcium deposit location in the thickness of the atherosclerotic plaque. We noted that totally calcified plaques were associated with carotid artery stenosis by more than 30 %. According to the SEM data, we identified 2 leading patterns: diffuse and compact types of microcalcification. There was a statistically significant association of a low level of EDCD with a diffuse type of calcification both in vivo (p=0.010) and ex vivo (p=0.008). Patients, having carotid artery EDCD less than 0.21 mg/mm3, reported a significantly higher incidence of type 2 diabetes mellitus (p=0.0001) and a history of stroke (p=0.021). When comparing the MSCT data on the calcium deposit density and their localization in the atherosclerotic plaque, we noted a statistically significant predominance of low EDCD with superficial calcification of the plaque (p=0.002). Conclusion. The use of a calculated indicator of the equivalent density of calcium deposits of the atherosclerotic substrate allows us to non-invasively obtain new data on the structure of plaques. The observed association of the superficial distribution of calcification with low calcification density according to the MSCT data may indicate potential plaque instability.
About the Authors
A. N. KokovRussian Federation
Kokov Alexander N. – MD, Head, Laboratory of Radiology Diagnostic Methods
6, Sosnoviy blvd, Kemerovo, 650002
V. L. Masenko
Russian Federation
Masenko Vladislava L. – Candidate of Sciences (PhD) in Medicine, Researcher, Laboratory of Radiology Diagnostic Method
6, Sosnoviy blvd, Kemerovo, 650002
R. A. Mukhamadiyarov
Russian Federation
Mukhamadiyarov Rinat A. – Candidate of Sciences (PhD) in biology, Senior Researcher, Laboratory of Molecular, Translational and Digital Medicine
6, Sosnoviy blvd, Kemerovo, 650002
References
1. Lehker A, Mukherjee D. Coronary Calcium Risk Score and Cardiovascular Risk. Curr Vasc Pharmacol. 2021;19(3):280- 284. Doi: 10.2174/1570161118666200403143518.
2. Huang H, Virmani R, Younis H et al. The impact of calcification on the biomechanical stability of atherosclerotic plaques. Circulation. 2001;103(8):1051-1056. Doi: 10.1161/01.cir.103.8.1051.
3. Игнатьев И.М., Челышев Ю.А., Заночкин А.В. и др. Кальцификация атеросклеротических бляшек и оценка их стабильности // Ангиол. и сосуд. хир. – 2017. – Т. 23, № 1. – С. 13–20. [Ignatiev IM, Chelyshev YuA, Zanochkin AV, Gafurov MR, Orlinsky SB, Mamin GV, Khairullin RN. Calcification of atherosclerotic plaques and assessment of their stability. Angiol Vasc Surg. 2017;23(1):13-20. (In Russ.)].
4. Кнуути Ю. 2019 Рекомендации ЕSC по диагностике и лечению хронического коронарного синдрома // Рос. кардиол. журн. – 2020. – Т. 25, № 2. – C. 37–57. [Knuuti J. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes The Task Force for the diagnosis and management of chronic coronary syndromes of the European Society of Cardiology (ESC). Russ J Cardiol. 2020;25(2):37-57. (In Russ.)]. Doi: 10.15829/1560-4071-2020-2-3757.
5. Коков А.Н., Масенко В.Л., Барбараш О.Л. Прогностическая значимость эквивалентной плотности кальциевых депозитов коронарных артерий у мужчин с остеопеническим синдромом, перенесших коронарное шунтирование: проспективное исследование // Тер. арх. – 2022. – Т. 94, № 4. – С. 467–472. [Kokov AN, Masenko VL, Barbarash OL. Prognostic significance of equivalent density of calcium deposits of coronary arteries in men with osteopenic syndrome and prior coronary artery bypass grafting: prospective study. Ther Arch. 2022;94(4):467-472. (In Russ.)]. Doi: 10.26442/00403660.2022.04.201463.
6. Барышева Н.А., Меркулова И.Н., Шария М.А. и др. Сравнительный анализ структуры атеросклеротических бляшек у больных с острым коронарным синдромом и стабильной стенокардией по данным компьютерной томографии коронарных артерий // Кардиол. вестн. – 2020. – Т. 15, № 4. – С.48–56. [Barysheva NA, Merkulova IN, Shariya MA, Shabanova MS, Veselova TN, Gaman SA, Mironov VM, Shakhnovich RM, Zhukova NS, Sukhinina TS, Staroverov II, Ternovoy SK. Assessment of atherosclerotic plaques morphology and composition by computed tomography coronary angiography: comparison in patients with acute coronary syndrome and stable angina. Russ Cardiol Bull. 2020;15(4):48-56. (In Russ.)]. Doi: 10.36396/MS.2020.15.4.007.
7. Achenbach S, Raggi P. Imaging of coronary atherosclerosis by computed tomography. Eur Heart J. 2010;31(12):1442-1448. Doi: 10.1093/eurheartj/ehq150.
8. Шария М.А., Шабанова М.С., Веселова Т.Н. и др. Сопоставление результатов компьютерной томографии и внутрисосудистого ультразвукового исследования в оценке параметров атеросклеротических бляшек коронарных артерий // Мед. визуализ. – 2018. – Т. 22, № 4. – С. 7–19. [Shariya MA, Shabanova MS, Veselova TN, Merkulova IN, Mironov VM, Gaman SA, Ternovoy SK. Comparison of computed tomography with intravascular ultrasound in evaluation of coronary plaques parameters. Med Visualiz. 2018;(4):7-19. (In Russ.)]. Doi: 10.24835/1607-0763-2018-4-7-19.
9. Коков А.Н., Масенко В.Л., Малюта Е.Б. и др. Особенности кальциноза коронарного и некоронарного сосудистого русла у больных мультифокальным атеросклерозом // Радиол.–практ. – 2013. – № 1. – С. 29–36. [Kokov AN, Masenko VL, Maluta EB, Semenov SE, Barbarash OL. Features of calcification of the coronary and non-coronary vascular bed in patients with multifocal atherosclerosis. Radiol–pract. 2013;(1):29-36. (In Russ.)].
10. Otsuka F, Sakakura K, Yahagi K, Joner M, Virmani R. Has our understanding of calcification in human coronary atherosclerosis progressed? Arterioscler Thromb Vasc Biol. 2014;34(4):724-736. Doi: 10.1161/ATVBAHA.113.302642.
11. Yahagi K, Kolodgie FD, Otsuka F, Finn AV, Davis HR, Joner M, Virmani R. Pathophysiology of native coronary, vein graft, and in-stent atherosclerosis. Nat Rev Cardiol. 2016;13(2):79-98. Doi: 10.1038/nrcardio.2015.164.
12. Poorthuis MHF, Herings RAR, Dansey K, Damen JAA, Greving JP, Schermerhorn ML, de Borst GJ. External Validation of Risk Prediction Models to Improve Selection of Patients for Carotid Endarterectomy. Stroke. 2022;53(1):87-99. Doi: 10.1161/STROKEAHA.120.03252.
13. Espitia O, Chatelais M, Steenman M, Charrier C, Maurel B, Georges S, Houlgatte R, Verrecchia F, Ory B, Lamoureux F, Heymann D, Gouëffic Y, Quillard T. Implication of molecular vascular smooth muscle cell heterogeneity among arterial beds in arterial calcification. PLoS One. 2018;13(1):e0191976. 2018;13(1):e019197. Doi: 10.1371/journal.pone.0191976.
14. Montanaro M, Scimeca M, Anemona L, Servadei F, Giacobbi E, Bonfiglio R, Bonanno E, Urbano N, Ippoliti A, Santeusanio G, Schillaci O, Mauriello A. The Paradox Effect of Calcification in Carotid Atherosclerosis: Microcalcification is Correlated with Plaque Instability. Int J Mol Sci. 2021;22(1):395. Doi: 10.3390/ijms22010395.
15. Karlöf E, Seime T, Dias N, Lengquist M, Witasp A, Almqvist H, Kronqvist M, Gadin JR, Odeberg J, Maegdefessel L, Stenvinkel P, Matic LP, Hedin U. Correlation of computed tomography with carotid plaque transcriptomes associates calcification with lesion-stabilization. Atherosclerosis. 2019;288:175-185. Doi: 10.1016/j.atherosclerosis.2019.05.005.
16. Miralles M, Merino J, Busto M, Perich X, Barranco C, Vidal-Barraquer F. Quantification and characterization of carotid calcium with multi-detector CT-angiography. Eur J Vasc Endovasc Surg. 2006;32(5):561-567. Doi: 10.1016/j.ejvs.2006.02.019.
17. Ruiz JL, Hutcheson JD, Cardoso L, Bakhshian Nik A, Condado de Abreu A, Pham T, Buffolo F, Busatto S, Federici S, Ridolfi A, Aikawa M, Bertazzo S, Bergese P, Weinbaum S, Aikawa E. Nanoanalytical analysis of bisphosphonatedriven alterations of microcalcifications using a 3D hydrogel system and in vivo mouse model. Proc Natl Acad Sci USA. 2021;118(14):e1811725118. Doi: 10.1073/pnas.1811725118.
18. van den Bouwhuijsen QJ, Bos D, Ikram MA, Hofman A, Krestin GP, Franco OH, van der Lugt A, Vernooij MW. Coexistence of Calcification, Intraplaque Hemorrhage and Lipid Core within the Asymptomatic Atherosclerotic Carotid Plaque: The Rotterdam Study. Cerebrovasc Dis. 2015;39(5-6):319-324. Doi: 10.1159/000381138.
19. Chistiakov DA, Myasoedova VA, Melnichenko AA, Grechko AV, Orekhov AN. Calcifying Matrix Vesicles and Atherosclerosis. Biomed Res Int. 2017;2017:7463590. Doi: 10.1155/2017/7463590.
20. Терновой С.К., Шабанова М.С., Гаман С.А. и др. Роль компьютерной томографии в выявлении нестабильных атеросклеротических бляшек коронарных артерий: сопоставление результатов компьютерной томографии и внутрисосудистого ультразвукового исследования // Рос. электр. журн. луч. диагност. – 2016. – Т. 6, № 3. – С. 68–79. [Ternovoy SK, Shabanova MS, Gaman SA et al. Role of computed tomography in detection of vulnerable coronary plaques in comparison with intravascular ultrasound. REJR. 2016;6(3):68-79. (In Russ.)]. Doi: 10.21569/2222-7415-2016-6-3-68-79.
Review
For citations:
Kokov A.N., Masenko V.L., Mukhamadiyarov R.A. Equivalent density of calcium deposits – a new diagnostic pattern for atherocalcinosis. Regional blood circulation and microcirculation. 2024;23(1):26-36. (In Russ.) https://doi.org/10.24884/1682-6655-2024-23-1-26-36