Preview

Регионарное кровообращение и микроциркуляция

Расширенный поиск

Биотехнологические подходы в кардиологии на основе модулирования механизмов с участием интерлейкина-1

https://doi.org/10.24884/1682-6655-2025-24-1-4-13

Аннотация

Сердечно-сосудистые заболевания (ССЗ) занимают первое место в структуре смертности и инвалидизации во всем мире. Одну из важнейших ролей в прогрессировании ССЗ играет хроническое воспаление низкой степени активности. В обзоре рассматривается роль цитокинов семейства интерлейкина-1 (IL-1) в развитии ССЗ. Цитокины семейства IL-1 играют важную роль в прогрессировании атеросклероза, развитии инфаркта миокарда (ИМ), хронической сердечной недостаточности (ХСН). В обзоре представлены данные о механизмах действия IL-1, эффективности анти-IL-1-препаратов в рамках профилактики ССЗ. Рассмотрена возможность использования изменения состава кишечной микробиоты как метода воздействия на уровень IL-1.

Об авторах

Е. С. Процак
Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр имени В. А. Алмазова» Министерства здравоохранения Российской Федерации
Россия

Процак Егор Сергеевич – младший научный сотрудник 

197341, Санкт-Петербург, ул. Аккуратова, д. 2 



Ю. Ю. Борщев
Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр имени В. А. Алмазова» Министерства здравоохранения Российской Федерации ; Федеральное государственное бюджетное учреждение «Научно-исследовательский институт онкологии имени Н. Н. Петрова» Министерства здравоохранения Российской Федерации
Россия

Борщев Юрий Юрьевич – канд. биол. наук, ведущий научный сотрудник, зав. лабораторией токсикологии 

197341, Санкт-Петербург, ул. Аккуратова, д. 2 

197758, Санкт-Петербург, пос. Песочный, ул. Ленинградская, д. 68 



М. М. Галагудза
Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр имени В. А. Алмазова» Министерства здравоохранения Российской Федерации ; Федеральное государственное бюджетное образовательное учреждение высшего образования «Первый Санкт-Петербургский государственный медицинский университет имени академика И. П. Павлова» Министерства здравоохранения Российской Федерации
Россия

Галагудза Михаил Михайлович – д-р мед. наук, профессор, член-корр. раН, директор ИЭМ 

197341, Россия, Санкт-Петербург, ул. Аккуратова, д. 2 

197022, Россия, Санкт-Петербург, ул. Льва Толстого, д. 6-8 



Список литературы

1. Liberale L, Montecucco F, Schwarz L, et al. Inflammation and cardiovascular diseases: lessons from seminal clinical trials. Cardiovasc Res. 2021;117(2):411-422. https://doi.org/10.1093/cvr/cvaa211.

2. Тарловская Е. И. Коморбидность и полиморбидность – современная трактовка и насущные задачи, стоящие перед терапевтическим сообществом // Кардиология. 2018. 58(9S). С. 29–38. https://doi.org/10.18087/cardio.2562.

3. Иващенко В. В., Чернышев И. В., Перепанова Т. С., и др. Стресс и синдром системного воспалительного ответа // Экспериментальная и клиническая урология. 2012. №4. С. 20–22.

4. Shao Y, Cheng Z, Li X, et al. Immunosuppressive/antiinflammatory cytokines directly and indirectly inhibit endothelial dysfunction - a novel mechanism for maintaining vascular function. J Hematol Oncol. 2014;7:80. https://doi.org/10.1186/s13045-014-0080-6.

5. Zhang H, Dhalla NS. The Role of Pro-Inflammatory Cytokines in the Pathogenesis of Cardiovascular Disease. Int J Mol Sci. 2024;25(2):1082. https://doi.org/10.3390/ijms25021082.

6. Dinarello CA. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol Rev. 2018;281(1):8-27. https://doi.org/10.1111/imr.12621.

7. Broderick L, Hoffman HM. IL-1 and autoinflammatory disease: biology, pathogenesis and therapeutic targeting. Nat Rev Rheumatol. 2022;18(8):448-463. https://doi.org/10.1038/s41584-022-00797-1. Erratum in: Nat Rev Rheumatol. 2024;20(7):452. https://doi.org/10.1038/s41584-024-01128-2.

8. Насонов Е. Л., Сукмарова З. Н., Попкова Т. В., Белов Б. С. Проблемы иммунопатологии и перспективы фармакотерапии идиопатического рецидивирующего перикардита: применение ингибитора интерлейкина 1 (Анакинра) // Научно-практическая ревматология. 2023. Т. 61, №1. С. 47–61. https://doi.org/10.47360/1995-4484-2023-47-61.

9. Epelman S, Liu PP, Mann DL. Role of innate and adaptive immune mechanisms in cardiac injury and repair. Nat Rev Immunol. 2015;15(2):117-29. https://doi.org/10.1038/nri3800.

10. Рябов В. В., Гомбожапова А. Э., Самойлова Ю. О., и др. NLRP3 инфламмасома в патогенезе острого инфаркта миокарда: взгляд кардиолога // Российский кардиологический журнал. 2024. Т. 29, №4. С. 5649. https://doi.org/10.15829/1560-4071-2024-5649.

11. Virk MS, Virk MA, He Y, et al. The Anti-Inflammatory and Curative Exponent of Probiotics: A Comprehensive and Authentic Ingredient for the Sustained Functioning of Major Human Organs. Nutrients. 2024;16(4):546. https://doi.org/10.3390/nu16040546.

12. Chen CJ, Kono H, Golenbock D, et al. Identification of a key pathway required for the sterile inflammatory response triggered by dying cells. Nat Med. 2007;13(7):851-6. https://doi.org/10.1038/nm1603.

13. Kim B, Lee Y, Kim E, et al. The Interleukin-1α Precursor is Biologically Active and is Likely a Key Alarmin in the IL-1 Family of Cytokines. Front Immunol. 2013;4:391. https://doi.org/10.3389/fimmu.2013.00391.

14. Kurt-Jones EA, Beller DI, Mizel SB, Unanue ER. Identification of a membrane-associated interleukin 1 in macrophages. Proc Natl Acad Sci U S A. 1985;82(4):1204-8. https://doi.org/10.1073/pnas.82.4.1204.

15. Brody DT, Durum SK. Membrane IL-1: IL-1 alpha precursor binds to the plasma membrane via a lectin-like interaction. J Immunol. 1989;143(4):1183-7.

16. Dinarello CA. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood. 2011;117(14):3720- 32. https://doi.org/10.1182/blood-2010-07-273417.

17. Toldo S, Abbate A. The NLRP3 inflammasome in acute myocardial infarction. Nat Rev Cardiol. 2018;15(4):203-14. https://doi.org/10.1038/nrcardio.2017.161.

18. Toldo S, Mauro AG, Cutter Z, Abbate A. Inflammasome, pyroptosis, and cytokines in myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol. 2018;315(6):H1553- H1568. https://doi.org/10.1152/ajpheart.00158.2018.

19. Agostini L, Martinon F, Burns K, et al. NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity. 2004;20(3): 319-25. https://doi.org/10.1016/s1074-7613(04)00046-9.

20. Fantuzzi G, Ku G, Harding MW, et al. Response to local inflammation of IL-1 beta-converting enzyme- deficient mice. J Immunol. 1997;158(4):1818-24.

21. Dinarello CA. Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol. 2009;27: 519-50.https://doi.org/10.1146/annurev.immnol.021908.132612.

22. Mantsounga CS, Lee C, Neverson J, et al. Macrophage IL-1β promotes arteriogenesis by autocrine STAT3- and NF-κB-mediated transcription of pro-angiogenic VEGF-A. Cell Rep. 2022;38(5):110309. https://doi.org/10.1016/j.celrep.2022.110309.

23. Dinarello CA. Biologic basis for interleukin-1 in disease. Blood. 1996;87(6):2095-147.

24. Dinarello CA. Mutations in cryopyrin: bypassing roadblocks in the caspase 1 inflammasome for interleukin-1beta secretion and disease activity. Arthritis Rheum. 2007;56(9): 2817-22. https://doi.org/10.1002/art.22841.

25. Bersudsky M, Luski L, Fishman D, et al. Non-redundant properties of IL-1α and IL-1β during acute colon inflammation in mice. Gut. 2014;63(4):598-609. https://doi.org/10.1136/gutjnl-2012-303329.

26. Malik A, Sharma D, Zhu Q, et al. IL-33 regulates the IgA-microbiota axis to restrain IL-1α-dependent colitis and tumorigenesis. J Clin Invest. 2016;126(12):4469-4481. https://doi.org/10.1172/JCI88625.

27. Guler R, Parihar SP, Spohn G, et al. Blocking IL-1α but not IL-1β increases susceptibility to chronic Mycobacterium tuberculosis infection in mice. Vaccine. 2011;29(6):1339-46. https://doi.org/10.1016/j.vaccine.2010.10.045.

28. Matsumoto T, Tateda K, Miyazaki S, et al. Paradoxical synergistic effects of tumour necrosis factor and interleukin 1 in murine gut-derived sepsis with Pseudomonas aeruginosa. Cytokine. 1999;11(5):366-72. https://doi.org/10.1006/cyto.1998.0434.

29. Tadros T, Traber DL, Heggers JP, Herndon DN. Effects of interleukin-1alpha administration on intestinal ischemia and reperfusion injury, mucosal permeability, and bacterial translocation in burn and sepsis. Ann Surg. 2003;237(1): 101-9. https://doi.org/10.1097/00000658-200301000-00014.

30. Botsios C, Sfriso P, Furlan A, et al. Anakinra, antagonista umano ricombinante del recettore dell’IL-1, nella pratica clinica. Outcome in 60 pazienti con artrite reumatoide severa [Anakinra, a recombinant human IL-1 receptor antagonist, in clinical practice. Outcome in 60 patients with severe rheumatoid arthritis]. Reumatismo. 2007;59(1):32-7. Italian. https://doi.org/10.4081/reumatismo.2007.32.

31. Noe A, Howard C, Thuren T, et al. Pharmacokinetic and pharmacodynamic characteristics of single-dose Canakinumab in patients with type 2 diabetes mellitus. Clin Ther. 2014;36(11): 1625-37. https://doi.org/10.1016/j.clinthera.2014.08.004.

32. Cavelti-Weder C, Babians-Brunner A, Keller C, et al. Effects of gevokizumab on glycemia and inflammatory markers in type 2 diabetes. Diabetes Care. 2012;35(8):1654-62. https://doi.org/10.2337/dc11-2219.

33. Ross R, Glomset JA. Atherosclerosis and the arterial smooth muscle cell: Proliferation of smooth muscle is a key event in the genesis of the lesions of atherosclerosis. Science. 1973;180(4093):1332-9. https://doi.org/10.1126/science.180.4093.1332.

34. Braunwald E. Shattuck lecture--cardiovascular medicine at the turn of the millennium: triumphs, concerns, and opportunities. N Engl J Med. 1997;337(19):1360-9. https://doi.org/10.1056/NEJM199711063371906.

35. Ridker PM, Cushman M, Stampfer MJ, et al. Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N Engl J Med. 1997;336(14):973-9. https://doi.org/10.1056/NEJM199704033361401. Erratum in: N Engl J Med 1997;337(5):356.

36. Ross R. Atherosclerosis - an inflammatory disease. N Engl J Med. 1999;340(2):115-26. https://doi.org/10.1056/NEJM199901143400207.

37. Willerson JT, Ridker PM. Inflammation as a cardiovascular risk factor. Circulation. 2004;109(21 Suppl 1):II2-10. https://doi.org/10.1161/01.CIR.0000129535.04194.38.

38. Hansson GK, Hermansson A. The immune system in atherosclerosis. Nat Immunol. 2011;12(3):204-12. https://doi.org/10.1038/ni.2001.

39. Libby P, Lichtman AH, Hansson GK. Immune effector mechanisms implicated in atherosclerosis: from mice to humans. Immunity. 2013;38(6):1092-104. https://doi.org/10.1016/j.immuni.2013.06.009. Erratum in: Immunity. 2013;39(2):413.

40. Morton AC, Arnold ND, Gunn J, et al. Interleukin-1 receptor antagonist alters the response to vessel wall injury in a porcine coronary artery model. Cardiovasc Res. 2005;68(3): 493-501. https://doi.org/10.1016/j.cardiores.2005.06.026.

41. Isoda K, Sawada S, Ishigami N, et al. Lack of interleukin-1 receptor antagonist modulates plaque composition in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol. 2004;24(6):1068-73. https://doi.org/10.1161/01.ATV.0000127025.48140.a3.

42. Chamberlain J, Evans D, King A, et al. Interleukin- 1beta and signaling of interleukin-1 in vascular wall and circulating cells modulates the extent of neointima formation in mice. Am J Pathol. 2006 Apr;168(4):1396-403. https://doi.org/10.2353/ajpath.2006.051054.

43. Nicklin MJ, Hughes DE, Barton JL, et al. Arterial inflammation in mice lacking the interleukin 1 receptor antagonist gene. J Exp Med. 2000;191(2):303-12. https://doi.org/10.1084/jem.191.2.303.

44. Elhage R, Maret A, Pieraggi MT, et al. Differential effects of interleukin-1 receptor antagonist and tumor necrosis factor binding protein on fatty-streak formation in apolipoprotein E-deficient mice. Circulation. 1998;97(3):242-4. https://doi.org/10.1161/01.cir.97.3.242.

45. Zuurbier CJ, Abbate A, Cabrera-Fuentes HA, et al. Innate immunity as a target for acute cardioprotection. Cardiovasc Res. 2019;115(7):1131-1142. https://doi.org/10.1093/cvr/cvy304.

46. Abbate A, Salloum FN, Van Tassell BW, et al. Alterations in the interleukin-1/interleukin-1 receptor antagonist balance modulate cardiac remodeling following myocardial infarction in the mouse. PLoS One. 2011;6(11):e27923. https://doi.org/10.1371/journal.pone.0027923.

47. Sager HB, Heidt T, Hulsmans M, et al. Targeting Interleukin-1β Reduces Leukocyte Production After Acute Myocardial Infarction. Circulation. 2015;132(20):1880-90. https://doi.org/10.1161/CIRCULATIONAHA.115.016160.

48. Abbate A, Salloum FN, Vecile E, et al. Anakinra, a recombinant human interleukin-1 receptor antagonist, inhibits apoptosis in experimental acute myocardial infarction. Circulation. 2008;117(20):2670-83. https://doi.org/10.1161/CIRCULATIONAHA.107.740233.

49. Abbate A, Van Tassell BW, et al. Interleukin-1beta modulation using a genetically engineered antibody prevents adverse cardiac remodelling following acute myocardial infarction in the mouse. Eur J Heart Fail. 2010;12(4):319-22. https://doi.org/10.1093/eurjhf/hfq017.

50. Mauro AG, Mezzaroma E, Torrado J, et al. Reduction of Myocardial Ischemia-Reperfusion Injury by Inhibiting Interleukin-1 Alpha. J Cardiovasc Pharmacol. 2017;69(3):156-160. https://doi.org/10.1097/FJC.0000000000000452.

51. Toldo S, Mezzaroma E, Bressi E, et al. Interleukin-1β blockade improves left ventricular systolic/diastolic function and restores contractility reserve in severe ischemic cardiomyopathy in the mouse. J Cardiovasc Pharmacol. 2014;64(1):1-6. https://doi.org/10.1097/FJC.0000000000000106.

52. Toldo S, Mezzaroma E, Van Tassell BW, et al. Interleukin-1β blockade improves cardiac remodelling after myocardial infarction without interrupting the inflammasome in the mouse. Exp Physiol. 2013;98(3):734-45. https://doi.org/10.1113/expphysiol.2012.069831.

53. Van Tassell BW, Varma A, Salloum FN, et al. Interleukin-1 trap attenuates cardiac remodeling after experimental acute myocardial infarction in mice. J Cardiovasc Pharmacol. 2010;55(2):117-22. https://doi.org/10.1097/FJC.0b013e3181c87e53.

54. Toldo S, Schatz AM, Mezzaroma E, et al. Recombinant human interleukin-1 receptor antagonist provides cardioprotection during myocardial ischemia reperfusion in the mouse. Cardiovasc Drugs Ther. 2012;26(3):273-6. https://doi.org/10.1007/s10557-012-6389-x.

55. Ridker PM, Everett BM, Thuren T, et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N Engl J Med. 2017;377(12):1119-1131. https://doi.org/10.1056/NEJMoa1707914.

56. Ridker PM, MacFadyen JG, Everett BM, et al. Relationship of C-reactive protein reduction to cardiovascular event reduction following treatment with canakinumab: a secondary analysis from the CANTOS randomised controlled trial. Lancet. 2018;391(10118):319-328. https://doi.org/10.1016/S0140-6736(17)32814-3.

57. Ridker PM, Everett BM, Pradhan A, et al. Low-Dose Methotrexate for the Prevention of Atherosclerotic Events. N Engl J Med. 2019;380(8):752-762. https://doi.org/10.1056/NEJMoa1809798.

58. Loppnow H, Libby P. Proliferating or interleukin 1-activated human vascular smooth muscle cells secrete copious interleukin 6. J Clin Invest. 1990;85(3):731-8. https://doi.org/10.1172/JCI114498.

59. Tardif JC, Kouz S, Waters DD, et al. Efficacy and Safety of Low-Dose Colchicine after Myocardial Infarction. N Engl J Med. 2019;381(26):2497-2505. https://doi.org/10.1056/NEJMoa1912388.

60. Nidorf SM, Eikelboom JW, Budgeon CA, Thompson PL. Low-dose colchicine for secondary prevention of cardiovascular disease. J Am Coll Cardiol. 2013;61(4):404-410. https://doi.org/10.1016/j.jacc.2012.10.027.

61. Leung YY, Yao Hui LL, Kraus VB. Colchicine--Update on mechanisms of action and therapeutic uses. Semin Arthritis Rheum. 2015;45(3):341-50. https://doi.org/10.1016/j.semarthrit.2015.06.013.

62. Taskiran EZ, Cetinkaya A, Balci-Peynircioglu B, et al. The effect of colchicine on pyrin and pyrin interacting proteins. J Cell Biochem. 2012;113(11):3536-46. https://doi.org/10.1002/jcb.24231.

63. Seropian IM, Toldo S, Van Tassell BW, Abbate A. Antiinflammatory strategies for ventricular remodeling following ST-segment elevation acute myocardial infarction. J Am Coll Cardiol. 2014;63(16):1593-603. https://doi.org/10.1016/j.jacc.2014.01.014.

64. Abbate A, Kontos MC, Grizzard JD, et al. Interleukin-1 blockade with anakinra to prevent adverse cardiac remodeling after acute myocardial infarction (Virginia Commonwealth University Anakinra Remodeling Trial [VCU-ART] Pilot study). Am J Cardiol. 2010;105(10):1371-1377.e1. https://doi.org/10.1016/j.amjcard.2009.12.059.

65. Abbate A, Van Tassell BW, Biondi-Zoccai G, et al. Effects of interleukin-1 blockade with anakinra on adverse cardiac remodeling and heart failure after acute myocardial infarction [from the Virginia Commonwealth UniversityAnakinra Remodeling Trial (2) (VCU-ART2) pilot study]. Am J Cardiol. 2013;111(10):1394-400. https://doi.org/10.1016/j.amjcard.2013.01.287.

66. Abbate A, Trankle CR, Buckley LF, et al. Interleukin-1 Blockade Inhibits the Acute Inflammatory Response in Patients With ST-Segment-Elevation Myocardial Infarction. J Am Heart Assoc. 2020;9(5):e014941. https://doi.org/10.1161/JAHA.119.014941.

67. Morton AC, Rothman AM, Greenwood JP, et al. The effect of interleukin-1 receptor antagonist therapy on markers of inflammation in non-ST elevation acute coronary syndromes: the MRC-ILA Heart Study. Eur Heart J. 2015;36(6):377-84. https://doi.org/10.1093/eurheartj/ehu272.

68. Hill, C., Guarner, F., Reid, G., et al. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014;11:506–514. https://doi.org/10.1038/nrgastro.2014.66.

69. Zhang Y, Li L, Guo C, et al. Effects of probiotic type, dose and treatment duration on irritable bowel syndrome diagnosed by Rome III criteria: a meta-analysis. BMC Gastroenterol. 2016;16(1):62. https://doi.org/10.1186/s12876-016-0470-z.

70. Kang EJ, Kim SY, Hwang IH, Ji YJ. The effect of probiotics on prevention of common cold: a meta-analysis of randomized controlled trial studies. Korean J Fam Med. 2013;34(1):2-10. https://doi.org/10.4082/kjfm.2013.34.1.2.

71. Ma YY, Li L, Yu CH, et al. Effects of probiotics on nonalcoholic fatty liver disease: a meta-analysis. World J Gastroenterol. 2013;19(40):6911-8. https://doi.org/10.3748/wjg.v19.i40.6911.

72. Jafarnejad S, Saremi S, Jafarnejad F, Arab A. Effects of a Multispecies Probiotic Mixture on Glycemic Control and Inflammatory Status in Women with Gestational Diabetes: A Randomized Controlled Clinical Trial. J Nutr Metab. 2016; 2016:5190846. https://doi.org/10.1155/2016/5190846.

73. Wu Y, Zhang Q, Ren Y, Ruan Z. Effect of probiotic Lactobacillus on lipid profile: A systematic review and meta-analysis of randomized, controlled trials. PLoS One. 2017;12(6):e0178868. https://doi.org/10.1371/journal.pone.0178868.

74. Борщев Ю. Ю., Сонин Д. Л., Минасян С. М., и др. Роль кишечной микробиоты в развитии артериальной гипертензии: механизмы и терапевтические мишени // Артериальная гипертензия. 2024. Т. 30, № 2. С. 159–173. https://doi.org/10.18705/1607-419X-2024-2359.

75. Plaza-Díaz J, Ruiz-Ojeda FJ, Vilchez-Padial LM, Gil A. Evidence of the Anti-Inflammatory Effects of Probiotics and Synbiotics in Intestinal Chronic Diseases. Nutrients. 2017;9(6):555. https://doi.org/10.3390/nu9060555.

76. Maes M, Kubera M, Leunis JC. The gut-brain barrier in major depression: intestinal mucosal dysfunction with an increased translocation of LPS from gram negative enterobacteria (leaky gut) plays a role in the inflammatory pathophysiology of depression. Neuro Endocrinol Lett. 2008;29(1):117-24.

77. Berg RD, Garlington AW. Translocation of certain indigenous bacteria from the gastrointestinal tract to the mesenteric lymph nodes and other organs in a gnotobiotic mouse model. Infect Immun. 1979;23(2):403-11. https://doi.org/10.1128/iai.23.2.403-411.1979.

78. Буровенко И. Ю., Борщев Ю. Ю., Минасян С.М., и др. Исследование всасывания моносахаридов в изолированной петле тонкой кишки и устойчивости миокарда к ишемии-реперфузии у крыс при введении антимикробных препаратов. Экспериментальная и клиническая гастроэнтерология. 2019. № 3(163). С. 43–50. https://doi.org/10.31146/1682-8658-ecg-163-3-43-50.

79. Bravo JA, Forsythe P, Chew MV, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A. 2011;108(38):16050-5. https://doi.org/10.1073/pnas.1102999108.

80. Борщев Ю. Ю., Буровенко И. Ю., Карасева А. Б., и др. Влияние качественного состава высокожировой диеты на уровень цитокинов и устойчивость миокарда к ишемии-реперфузии у крыс с синдромом системного воспалительного ответа // Медицинская иммунология. 2021. Т. 23, №5. С. 1089–1104. https://doi.org/10.15789/1563-0625-EOT-2166.

81. Borshchev YY, Burovenko IY, Karaseva AB, et al. Probiotic Therapy with Lactobacillus acidophilus and Bifidobacterium animalis subsp. lactis Results in Infarct Size Limitation in Rats with Obesity and Chemically Induced Colitis. Microorganisms. 2022;10(11):2293. https://doi.org/10.3390/microorganisms10112293.

82. Mirzababaei M, Babaei F, Ghafghazi S, et al. Saccharomyces Boulardii alleviates neuroinflammation and oxidative stress in PTZ-kindled seizure rat model. Naunyn Schmiedebergs Arch Pharmacol. 2024;398:1625-1635. https://doi.org/10.1007/s00210-024-03361-8.

83. Kazemi A, Soltani S, Ghorabi S, et al. Effect of probiotic and synbiotic supplementation on inflammatory markers in health and disease status: A systematic review and metaanalysis of clinical trials. Clin Nutr. 2020;39(3):789-819. https://doi.org/10.1016/j.clnu.2019.04.004.


Рецензия

Для цитирования:


Процак Е.С., Борщев Ю.Ю., Галагудза М.М. Биотехнологические подходы в кардиологии на основе модулирования механизмов с участием интерлейкина-1. Регионарное кровообращение и микроциркуляция. 2025;24(1):4-13. https://doi.org/10.24884/1682-6655-2025-24-1-4-13

For citation:


Protsak E.S., Borshchev Yu.Yu., Galagudza M.M. Biotechnological approaches in cardiology based on modulation of mechanisms involving interleukin-1. Regional blood circulation and microcirculation. 2025;24(1):4-13. (In Russ.) https://doi.org/10.24884/1682-6655-2025-24-1-4-13

Просмотров: 165


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1682-6655 (Print)
ISSN 2712-9756 (Online)