Preview

Regional blood circulation and microcirculation

Advanced search

Analysis of mechanisms of functional implementation of morphological differences in the structure of hemomicrocirculatory vessels

https://doi.org/10.24884/1682-6655-2025-24-1-101-109

Abstract

In the modern understanding of the system of vascular trophic support, the haemomicrocirculatory bed is a sequential connection of arterioles, precapillaries, capillaries, postcapillaries and venules, ordered by their location in tissues, as well as the presence of arteriolo-venular anastomoses. Differentiation of various links of the microcirculatory bed is based not only on the size of the vessel lumen, but also on the peculiarities of the structure of their walls and the functions performed. The main metabolic link of the human circulatory system is the capillary bed, in which the presence of three types of capillaries is currently described, the distinction of which is established by the peculiarities of the structure of their walls. At the same time, morphological differences of capillary wall structure determine essential differences in their functions, which causes a number of critical comments on the validity of uniting capillaries into one type of vessels only in the absence of diameter differences. In addition, when forming an objective morphofunctional assessment of the organization of the haemomicrocirculatory bed of an organ and/or tissue, it is necessary to evaluate topographic-anatomical regularities of the architectonics and mutual location of different types of capillaries in the vascular network of organs and tissues, which can be determined using modern methods of morphometry. The results of further research in this direction can become new knowledge about the regularities of blood supply organization, allowing to detail the role of various microvessels in the organization of microhemodynamics and metabolic processes in organs and tissues in norm and pathology, as well as find an important applied use in the development of new methods of selective drug delivery to the focus of pathological process in various human diseases.

About the Authors

V. E. Milyukov
Pirogov Russian National Research Medical University
Russian Federation

Milyukov Vladimir E. – MD, Professor, Department of Anatomy

1, Ostrovityanova str., Moscow, 117997



N. O. Bartosh
Pirogov Russian National Research Medical University
Russian Federation

Bartosh Nikolay O. – MD, Professor, Department of Topographic Anatomy and Operative Surgery

1, Ostrovityanova str., Moscow, 117997



D. A. Averin
Pirogov Russian National Research Medical University
Russian Federation

Averin Damir A. – 3rd year Student, Institute of World Medicine

1, Ostrovityanova str., Moscow, 117997



References

1. Ivonin AGG, Pimenov EV, Oborin VA, et al. Directed transport of drugs: current state of the issue and prospects. Izvestiya Komi nauchnogo centrum URO RAN. 2012;1(9):46-55. (In Russ.).

2. Barbarovich AS., Barbarovich AA, Litvinov GE, Paltseva MF. Nanomaterials: drug delivery. Actual problems of medicine: collection of scientific articles. 2022;3:3-6. (In Russ.).

3. [Kupriyanov VV. Pathways of microcirculation. Chisinau: Cartia Moldoveniască; 1969. 260 р. (In Russ.).

4. Chujan EN, Tribrat NS, Ananchenko MN, Ravaeva MJu. Tkanevaja mikrogemodinamika: vlijanie nizkointensivnogo jelektromagnitnogo izluchenija millimetrovogo diapazona: monografija. Simferopol’: IT “ARIAL”; 2017. 445 р. (In Russ.).

5. Mchedlishvili GI. Blood microcirculation: General regularities of regulation and disorders. L.: Nauka; 1989. 295 р. (In Russ.).

6. Petrenko ВM. Network construction of the microcirculatory channel. Izvestiya vysshee obrazovaniya vysshee obrazovaniya. Povolzhsky region. Medical sciences. 2010;1(13):37-46. (In Russ.).

7. Mizyova ИA. Spatial and temporal analysis of blood flow fluctuations in the human microcircular channel according to optical and thermometric measurements: dissertation abstract for the degree of Doctor of Physical and Mathematical Sciences: 1.5.2 / Mizyova Irina Andreevna. Perm, 2022. 36 р. (In Russ.).

8. Johnson PC. Overview of the microcirculation. In Handbook of Physiology: Microcirculation. 2nd edition. San Diego; 2008. P. 11-24. https://doi.org/10.1016/B978-0-12-374530-9.00022-X.

9. Dotinga BM, Mintzer JP, Moore JE, et al. Maturation of intestinal oxygenation: a review of mechanisms and clinical implications for preterm neonates. Frontiers in Pediatrics. 2020;8:354. https://doi.org/10.3389/fped.2020.00354.

10. Baitinger VF, Selyaninov KV. Microcirculatory bed in reperfused flaps: modern possibilities of hemodynamic disorders correction (part III). Issues of reconstructive and plastic surgery. 2021;24(2):41-47. (In Russ.). https://doi.org/10.52581/1814-1471/77/04.

11. Zambach SA, Cai C, Helms HCC, et al. Precapillary sphincters and pericytes at first-order capillaries as key regulators for brain capillary perfusion. Proceedings of the National Academy of Sciences. 2021;118(26). https://doi.org/10.1073/pnas.2023749118.

12. Schmid-Schönbein GW, Murakami H. Blood flow in contracting arterioles. International Journal of Microcirculation, Clinical and Experimental. 1985;4(4):311-328.

13. Rahman M, Siddik AB. Anatomy, Arterioles. StatPearls LLC: Treasure Island, FL, USA; 2021. https://doi.org/10.13140/RG.2.2.25885.87526.

14. Davis MJ, Hill MA, Kuo L. Local regulation of microvascular perfusion. Microcirculation. Academic Press; 2008. P. 161-284. https://doi.org/10.1002/cphy.cp020406.

15. Zoladz JA, Semik D, Zawadowska B, et al. Capillary density and capillary-to-fibre ratio in vastus lateralis muscle of untrained and trained men. Folia histochemica et cytobiologica. 2005;43(1):11-17. https://doi.org/10.5603/4623.

16. Emrani Z, Karbalaie A, Fatemi A, et al. Capillary density: An important parameter in nailfold capillaroscopy. Microvascular Research. 2017;109:7-18. https://doi.org/10.1016/j.mvr.2016.09.001.

17. Corliss BA, Mathews C, Doty R, et al. Methods to label, image, and analyze the complex structural architectures of microvascular networks. Microcirculation. 2019;26(5):e12520. https://doi.org/10.1111/micc.12520.

18. Egginton S. Physiological factors influencing capillary growth. Acta physiologica. 2011; 202(3):225-239. https://doi.org/10.1111/j.1748-1716.2010.02194.x.

19. Honig CR, Feldstein ML, Frierson JL. Capillary lengths, anastomoses, and estimated capillary transit times in skeletal muscle. American Journal of Physiology-Heart and Circulatory Physiology. 1977; 233(1):H122-H129. https://doi.org/10.1152/ajpheart.1977.233.1.H122.

20. Fujino H, Kondo H, Murakami S, et al. Differences in capillary architecture, hemodynamics, and angiogenic factors in rat slow and fast plantarflexor muscles. Muscle & nerve. 2012;45(2):242-249. https://doi.org/10.1002/mus.22267.

21. Schmid-Schönbein GW, Granger DN. Molecular basis for microcirculatory disorders. Springer Science & Business Media; 2013. https://doi.org/10.1007/978-2-8178-0761-4.

22. Eltanahy AM, Franco C, Jeyaraj P, et al. Ex vivo ocular perfusion model to study vascular physiology in the mouse eye. Experimental Eye Research. 2023;233:109543. https://doi.org/10.1016/j.exer.2023.109543.

23. Aycan K, Ulcay T, Kamaşak B. The morphology of the afferent and efferent domain of the sheep glomerulus. Folia Morphologica. 2021;80(4):881-887. https://doi.org/10.5603/FM.a2020.0124.

24. Fahrig C, Heidrich H, Voigt B, et al. Capillary microscopy of the nailfold in healthy subjects. International Journal of Microcirculation. 1995;15(6):287-292. https://doi.org/10.1159/000179077.

25. Feldstein ML, Henquell L, Honig CR. Frequency analysis of coronary intercapillary distances: site of capillary control. American Journal of Physiology-Heart and Circulatory Physiology. 1978;235(3):H321-H325. https://doi.org/10.1152/ajpheart.1978.235.3.H321.

26. Marín-Padilla M. Cerebral microvessels. Neuroscience in the 21st Century: From Basic to Clinical. Cham: Springer International Publishing; 2022. P. 2249-2270. https://doi.org/10.1007/978-1-4614-6434-1_137-1.

27. Pandiri AR. Overview of exocrine pancreatic pathobiology. Toxicologic pathology. 2014; 42(1):207-216. https://doi.org/10.1177/0192623313509907.

28. Duran WN, Sanchez FA, Breslin JW. Microcirculatory exchange function. Microcirculation. Academic Press. 2008; 81-124. https://doi.org/10.1002/cphy.cp020404.

29. Dzasokhov AS. Microcirculatory bed as a new object of therapy of malignant neoplasms (scientific review). Bulletin of new medical technologies. Electronic edition. 2015;9(1):3-7. https://doi.org/10.12737/10407. (In Russ.).

30. Sorokina LA, Kotelnikov IN. Marcello Malpighi (1628-1694): “De pulmonibus epistolae”, or “Two letters about the lungs”. Regional blood circulation and microcirculation. 2011;10(4):91-94. (In Russ.).

31. Okada H, Takemura G, Suzuki K, et al. Three-dimensional ultrastructure of capillary endothelial glycocalyx under normal and experimental endotoxemic conditions. Critical care. 2017;21:1-10. https://doi.org/10.1186/s13054-017-1841-8.

32. Kozlov VI. Blood microcirculation system: clinical and morphological aspects of the study. Regional blood circulation and microcirculation. 2006;5(1):84-101. (In Russ.).

33. Risau W. Differentiation of endothelium. The FASEB Journal. 1995;9(10):926–933. https://doi.org/10.1096/fasebj.9.10.7615161.

34. Ono S, Egawa G, Kabashima K. Regulation of blood vascular permeability in the skin. Inflammation and regeneration. 2017; 37:1-8. https://doi.org/10.1186/s41232-017-0042-9.

35. Ribatti D, Ico B, Vacca A, et al. Endothelial cell heterogeneity and organ specificity. Journal of hematotherapy & stem cell research. 2002;11(1):81-90. https://doi.org/10.1089/152581602753448559.

36. Egorova AV, Baranich TI, Brydun AV, et al. Morphological and Histophysiological Features of the Brain Capillary Endothelium. Journal of Evolutionary Biochemistry and Physiology. 2022;58(3):755-768. https://doi.org/10.1134/S0022093022030115.

37. Aird WC. Phenotypic Heterogeneity of the Endothelium: I. Structure, Function, and Mechanisms. Circulation Research. 2007;100(2):158–173. https://doi.org/10.1161/01.RES.0000255691.76142.4a.

38. Alahmari A. Blood-brain barrier overview: structural and functional correlation. Neural plasticity. 2021; 2021. https://doi.org/10.1155/2021/6564585.

39. Minshall RD, Malik AB. Transport across the endothelium: regulation of endothelial permeability. Handb Exp Pharmacol. 2006;176(1):107-44. https://doi.org/10.1007/3-540-32967-6_4.

40. Pober JS. Physiology and pathobiology of microvascular endothelium. Microcirculation. Academic Press; 2008. P. 37-55. https://doi.org/10.1002/cphy.cp020402.

41. Leiby KL, Raredon MSB, Niklason LE. Bioengineering the blood-gas barrier. Comprehensive Physiology. 2020; 10(2):415. https://doi.org/10.1002/cphy.c190026.

42. Riva CE, Schmetterer L. Microcirculation of the ocular fundus. Microcirculation. Academic Press; 2008. P. 735-765. https://doi.org/10.1002/cphy.cp020416.

43. Esser S, Wolburg K, Wolburg H, et al. Vascular Endothelial Growth Factor Induces Endothelial Fenestrations In Vitro. The Journal of Cell Biology. 1998;140(4):947–959. https://doi.org/10.1083/jcb.140.4.947.

44. Kim SA., Kim SJ, Choi YA, et al. Retinal VEGFA maintains the ultrastructure and function of choriocapillaris by preserving the endothelial PLVAP. Biochemical and biophysical research communications. 2020;522(1):240-246. https://doi.org/10.1016/j.bbrc.2019.11.085.

45. Pavelka M, Roth J. Fenestrated Capillary. Functional Ultrastructure. 2010:258–259. https://doi.org/10.1007/978-3-211-99390-3_133.

46. Stan RV, Tse D., Deharvengt S. J., et al. The Diaphragms of Fenestrated Endothelia: Gatekeepers of Vascular Permeability and Blood Composition. Developmental Cell. 2012;23(6): 1203–1218. https://doi.org/10.1016/j.devcel.2012.11.003.

47. Stan RV, Kubitza M, Palade GE. PV-1 is a component of the fenestral and stomatal diaphragms in fenestrated endothelia. Proceedings of the National Academy of Sciences. 1999;96 (23):13203-13207. https://doi.org/10.1073/pnas.96.23.13203.

48. Farquhar MG. Fine Structure and Function in Capillaries of the Anterior Pituitary Gland. Angiology. 1961;12(7): 270–292. https://doi.org/10.1177/000331976101200704.

49. Pasqualini R, Arap W, McDonald DM. Probing the structural and molecular diversity of tumor vasculature. Trends in Molecular Medicine. 2002;12:563–571. https://doi.org/10.1016/s1471-4914(02)02429-2.

50. Braet F, Wisse E. Comparative Hepatology. 2002;1(1): 1. https://doi.org/10.1186/1476-5926-1-1.

51. Szafranska K, Neuman T, Baster Z, et al. From fixeddried to wet-fixed to live–comparative super-resolution microscopy of liver sinusoidal endothelial cell fenestrations. Nanophotonics. 2022;11(10):2253-2270. https://doi.org/10.1515/nanoph-2021-0818.

52. Vilas-Boas V, Cooreman A, Gijbels E, et al. M. Primary hepatocytes and their cultures for the testing of drug-induced liver injury. Advances in Pharmacology. 2019;85:1-30. https://doi.org/10.1016/bs.apha.2018.08.001.

53. Cogger VC, Hunt NJ, Le Couteur DG. Fenestrations in the liver sinusoidal endothelial cell. The liver: biology and pathobiology. 2020:435-443. https://doi.org/10.1002/9780470747919.ch27.

54. Stan RV. Endothelial stomatal and fenestral diaphragms in normal vessels and angiogenesis. Journal of cellular and molecular medicine. 2007;11(4):621-643. https://doi.org/10.1111/j.1582-4934.2007.00075.x.

55. Ribatti D, Nico B, Vacca A, et al. Endothelial Cell Heterogeneity and Organ Specificity. Journal of Hematotherapy & Stem Cell Research. 2002;11(1):81–90. https://doi.org/10.1089/152581602753448559.

56. Janzer RC., Raff MC. Astrocytes induce blood–brain barrier properties in endothelial cells. Nature. 1987;325(6101): 253-257. https://doi.org/10.1038/325253a0.

57. Gifre-Renom L, Daems M, Luttun A, et al. Organspecific endothelial cell differentiation and impact of microenvironmental cues on endothelial heterogeneity. International Journal of Molecular Sciences. 2022;23(3):1477. https://doi.org/10.3390/ijms23031477.

58. Desroches‐Castan A, Tillet E, Ricard N, et al. Bone Morphogenetic Protein 9 Is a Paracrine Factor Controlling Liver Sinusoidal Endothelial Cell Fenestration and Protecting Against Hepatic Fibrosis. Hepatology. 2019;70:1392–1408. https://doi.org/10.1002/hep.30655.

59. Chernukh AM, Alexandrov PM, Alekseev OV. Microcirculation. M.: Medicine; 1984. 428 р. (In Russ.).


Review

For citations:


Milyukov V.E., Bartosh N.O., Averin D.A. Analysis of mechanisms of functional implementation of morphological differences in the structure of hemomicrocirculatory vessels. Regional blood circulation and microcirculation. 2025;24(1):101-109. (In Russ.) https://doi.org/10.24884/1682-6655-2025-24-1-101-109

Views: 146


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-6655 (Print)
ISSN 2712-9756 (Online)