Preview

Regional blood circulation and microcirculation

Advanced search

Thromboresistant Endothelial Function in Obesity

https://doi.org/10.24884/1682-6655-2025-24-4-21-31

Abstract

The article presents an analysis of obesity as a multifactorial pathology associated with impaired hemostatic balance and an increased thrombotic risk. Based on current data, key pathogenetic mechanisms are examined, including chronic subclinical inflammation, insulin resistance, and oxidative stress, which lead to adipokine profile imbalance and the loss of vasoprotective properties of perivascular adipose tissue. Particular attention is given to glycocalyx degradation, decreased thrombomodulin expression and protein C system activity, elevated von Willebrand factor levels, increased expression of intercellular adhesion molecules, and suppressed fibrinolytic activity due to PAI-1 overexpression. The role of exosomes and microRNAs in the regulation of adipocyte-endothelial interactions is also discussed. Potential approaches to targeted modulation of adipokine pathways and personalized antithrombotic prophylaxis are summarized.

About the Authors

A. A. Gerasimenko
National Research Mordovia State University
Russian Federation

Gerasimenko Anastasia A. – Medical Institute student

68, Bolshevistskaya str., Saransk, 430000



Yu. N. Petrushkina
National Research Mordovia State University
Russian Federation

Petrushkina Yulia N. – Medical Institute student

68, Bolshevistskaya str., Saransk, 430000



A. V. Ryzhov
National Research Mordovia State University
Russian Federation

Ryzhov Artem V. – Assistant, Department of Normal and Pathological Physiology

68, Bolshevistskaya str., Saransk, 430000



A. I. Polozova
National Research Mordovia State University
Russian Federation

Polozova Alexandra I. – Laboratory Assistant, Department of Normal and Pathological Physiology

68, Bolshevistskaya str., Saransk, 430000



E. S. Dergacheva
National Research Mordovia State University
Russian Federation

Dergacheva Ekaterina S. – Medical Institute student

68, Bolshevistskaya str., Saransk, 430000



T. I. Vlasova
National Research Mordovia State University
Russian Federation

Vlasova Tatyana I. – Doctor of Medical Sciences, Professor, Head, Department of Normal and Pathological Physiology

68, Bolshevistskaya str., Saransk, 430000



References

1. Powell-Wiley TM, Poirier P, Burke LE, et al. American Heart Association Council on Lifestyle and Cardiometabolic Health; Council on Cardiovascular and Stroke Nursing; Council on Clinical Cardiology; Council on Epidemiology and Prevention; and Stroke Council. Obesity and Cardiovascular Disease: A Scientific Statement from the American Heart Association. Circulation. 2021;143(21):e984-e1010. https://doi.org/10.1161/CIR.0000000000000973.

2. Kajikawa M, Higashi Y. Obesity and Endothelial Function. Biomedicines. 2022;10(7):1745. https://doi.org/10.3390/biomedicines10071745.

3. Stepanova TV, Ivanov AN, Tereshkina NE, et al. Markers of endothelial dysfunction: pathogenetic role and diagnostic significance (literature review). Clinical Laboratory Diagnostics. 2019;64(1):34-41. (In Russ.). https://doi.org/10.18821/0869-2084-2019-64-1-34-41.

4. Babichev AV. Role of endothelium in hemostasis mechanisms. Pediatriya. 2013;(1):22-27. (In Russ.). https://doi.org/10.17816/ped41122-127.

5. Ibragimova E, Garifulina L. Role of endothelial dysfunction in the development of cardiovascular complications in children with abdominal obesity (literature review). International Journal of Scientific Pediatrics. 2024;3(8):710-718. (In Russ.). https://doi.org/10.56121/2181-2926-2024-3-8-710-718.

6. Li M, Qian M, Kyler K, Xu J. Adipose Tissue-Endothelial Cell Interactions in Obesity-Induced Endothelial Dysfunction. Front Cardiovasc Med. 2021;8:681581. https://doi.org/10.3389/fcvm.2021.681581.

7. Chaurasiya V, Nidhina Haridas PA, Olkkonen VM. Adipocyteendothelial cell interplay in adipose tissue physiology. Biochem Pharmacol. 2024;222:116081. https://doi.org/10.1016/j.bcp.2024.116081.

8. Sabaratnam R, Svenningsen P. Adipocyte-Endothelium Crosstalk in Obesity. Front Endocrinol (Lausanne). 2021;12: 681290. https://doi.org/10.3389/fendo.2021.681290.

9. Engin A. Endothelial Dysfunction in Obesity and Therapeutic Targets. Adv Exp Med Biol. 2024;1460:489-538. https://doi.org/10.1007/978-3-031-63657-8_17.

10. Kahn CR, Wang G, Lee KY. Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome. J Clin Invest. 2019;129(10):3990-4000. https://doi.org/10.1172/JCI129187.

11. Engin AB. Message Transmission Between Adipocyte and Macrophage in Obesity. Adv Exp Med Biol. 2024;1460:273-295. https://doi.org/10.1007/978-3-031-63657-8_9.

12. Engin A. Adiponectin Resistance in Obesity: Adiponectin Leptin/Insulin Interaction. Adv Exp Med Biol. 2024;1460:431-462. https://doi.org/10.1007/978-3-031-63657-8_15.

13. Straub LG, Scherer PE. Metabolic Messengers: Adiponectin. Nat Metab. 2019;1(3):334-339. https://doi.org/10.1038/s42255-019-0041-z.

14. Chen HT, Tsou HK, Chen JC, et al. Adiponectin enhances intercellular adhesion molecule-1 expression and promotes monocyte adhesion in human synovial fibroblasts. PLoS One. 2014;9(3):e92741. https://doi.org/10.1371/journal.pone.0092741.

15. Li Y, Onodera T, Scherer PE. Adiponectin. Trends Endocrinol Metab. 2024;35(7):674-675. https://doi.org/10.1016/j.tem.2024.05.004.

16. Huby AC, Otvos L Jr, Belin de Chantemèle EJ. Leptin Induces Hypertension and Endothelial Dysfunction via AldosteroneDependent Mechanisms in Obese Female Mice. Hypertension. 2016;67(5):1020-1028. https://doi.org/10.1161/HYPERTENSIONAHA.115.06642.

17. Obradovic M, Sudar-Milovanovic E, Soskic S, et al. Leptin and Obesity: Role and Clinical Implication. Front Endocrinol (Lausanne). 2021;12:585887. https://doi.org/10.3389/fendo.2021.585887.

18. Mellott E, Faulkner JL. Mechanisms of leptin-induced endothelial dysfunction. Curr Opin Nephrol Hypertens. 2023;32(2):118-123. https://doi.org/10.1097/MNH.0000000000000867.

19. Ayed K, Nabi L, Akrout R, Mrizak H, et al. Obesity and cancer: focus on leptin. Mol Biol Rep. 2023;50(7):6177-6189. https://doi.org/10.1007/s11033-023-08525-y.

20. Faulkner JL, Kennard S, Huby AC, et al. Progesterone Predisposes Females to Obesity-Associated Leptin-Mediated Endothelial Dysfunction via Upregulating Endothelial MR (Mineralocorticoid Receptor) Expression. Hypertension. 2019;74(3):678-686. https://doi.org/10.1161/HYPERTENSIONAHA.119.12802.

21. Tan L, Lu X, Danser AHJ, Verdonk K. The Role of Chemerin in Metabolic and Cardiovascular Disease: A Literature Review of Its Physiology and Pathology from a Nutritional Perspective. Nutrients. 2023;15(13):2878. https://doi.org/10.3390/nu15132878.

22. Landgraf K, Friebe D, Ullrich T, et al. Chemerin as a mediator between obesity and vascular inflammation in children. J Clin Endocrinol Metab. 2012;97(4):E556-64. https://doi.org/10.1210/jc.2011-2937.

23. Lehrke M, Reilly MP, Millington SC, et al. An inflammatory cascade leading to hyperresistinemia in humans. PLoS Med. 2004;1(2):e45. https://doi.org/10.1371/journal.pmed.0010045.

24. Furuhashi M, Saitoh S, Shimamoto K, Miura T. Fatty Acid-Binding Protein 4 (FABP4): Pathophysiological Insights and Potent Clinical Biomarker of Metabolic and Cardiovascular Diseases. Clin Med Insights Cardiol. 2015;8(Suppl 3):23-33. https://doi.org/10.4137/CMC.S17067.

25. Aragonès G, Saavedra P, Heras M, et al. Fatty acidbinding protein 4 impairs the insulin-dependent nitric oxide pathway in vascular endothelial cells. Cardiovasc Diabetol. 2012;11:72. https://doi.org/10.1186/1475-2840-11-72.

26. Martínez-Micaelo N, Rodríguez-Calvo R, Guaita-Esteruelas S, et al. Extracellular FABP4 uptake by endothelial cells is dependent on cytokeratin 1 expression. Biochim Biophys Acta Mol Cell Biol Lipids. 2019;1864(3):234-244. https://doi.org/10.1016/j.bbalip.2018.11.011.

27. Flores-Cortez YA, Barragán-Bonilla MI, Mendoza-Bello JM, et al. Interplay of retinol binding protein 4 with obesity and associated chronic alterations (Review). Mol Med Rep. 2022;26(1):244. https://doi.org/10.3892/mmr.2022.12760.

28. Yang Q, Graham TE, Mody N, et al. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature. 2005;436(7049):356-362. https://doi.org/10.1038/nature03711.

29. Liu Y, Zhong Y, Chen H, et al. Retinol-Binding ProteinDependent Cholesterol Uptake Regulates Macrophage Foam Cell Formation and Promotes Atherosclerosis. Circulation. 2017;135(14):1339-1354. https://doi.org/10.1161/CIRCULATIONAHA.116.024503.

30. Yan QW, Yang Q, Mody N, et al. The adipokine lipocalin 2 is regulated by obesity and promotes insulin resistance. Diabetes. 2007;56(10):2533-2540. https://doi.org/10.2337/db07-0007.

31. Liu JT, Song E, Xu A, et al. Lipocalin-2 deficiency prevents endothelial dysfunction associated with dietary obesity: role of cytochrome P450 2C inhibition. Br J Pharmacol. 2012;165(2):520-531. https://doi.org/10.1111/j.1476-5381.2011.01587.x.

32. Shibata K, Sato K, Shirai R, et al. Lipocalin-2 exerts pro-atherosclerotic effects as evidenced by in vitro and in vivo experiments. Heart Vessels. 2020;35(7):1012-1024. https://doi.org/10.1007/s00380-020-01556-6.

33. Rosen BS, Cook KS, Yaglom J, et al. Adipsin and complement factor D activity: an immune-related defect in obesity. Science. 1989;244(4911):1483-1487. https://doi.org/10.1126/science.2734615.

34. Dare A, Chen SY. Adipsin in the pathogenesis of cardiovascular diseases. Vascul Pharmacol. 2024;154:107270. https://doi.org/10.1016/j.vph.2023.107270.

35. Zhang X, Duan Y, Zhang X, et al. Adipsin alleviates cardiac microvascular injury in diabetic cardiomyopathy through Csk-dependent signaling mechanism. BMC Med. 2023; 21(1):197. https://doi.org/10.1186/s12916-023-02887-7.

36. Milusev A, Despont A, Shaw J, et al. Inflammatory stimuli induce shedding of heparan sulfate from arterial but not venous porcine endothelial cells leading to differential proinflammatory and procoagulant responses. Sci Rep. 2023;13(1):4483. https://doi.org/10.1038/s41598-023-31396-z.

37. Dogné S, Flamion B, Caron N. Endothelial Glycocalyx as a Shield Against Diabetic Vascular Complications: Involvement of Hyaluronan and Hyaluronidases. Arterioscler Thromb Vasc Biol. 2018;38(7):1427-1439. https://doi.org/10.1161/ATVBAHA.118.310839.

38. Bicadze VO, Slukhanchuk EV, Khizroeva DKh, et al. Anticoagulant, antiinflammatory, antiviral and antitumor properties of heparins. Obstetrics, Gynecology and Reproduction. 2021;(3):1-8. (In Russ.). https://doi.org/10.17802/2306-1278-2021-3-1-8.

39. Milusev A, Rieben R, Sorvillo N. The Endothelial Glycocalyx: A Possible Therapeutic Target in Cardiovascular Disorders. Front Cardiovasc Med. 2022;9:897087. https://doi.org/10.3389/fcvm.2022.897087.

40. Lesnaya AS, Darenskaya MA, Semenova NV, Kolesnikova LI. New aspect of metabolic disorders in obesity: carbonyl stress. Siberian Scientific Medical Journal. 2023;43(6):24-33. (In Russ.). https://doi.org/10.18699/SSMJ20230603.

41. Foote CA, Soares RN, Ramirez-Perez FI, et al. Endothelial Glycocalyx. Compr Physiol. 2022;12(4):3781-3811. https://doi.org/10.1002/cphy.c210029.

42. Dull RO, Hahn RG. The glycocalyx as a permeability barrier: basic science and clinical evidence. Crit Care. 2022; 26(1):273. https://doi.org/10.1186/s13054-022-04154-2.

43. Mortazavi CM, Hoyt JM, Patel A, Chignalia AZ. The glycocalyx and calcium dynamics in endothelial cells. Curr Top Membr. 2023;91:21-41. https://doi.org/10.1016/bs.ctm.2023.02.002.

44. Fuki IV, Iozzo RV, Williams KJ. Perlecan heparan sulfate proteoglycan: a novel receptor that mediates a distinct pathway for ligand catabolism. J Biol Chem. 2000;275(33):25742-25750. https://doi.org/10.1074/jbc.M909173199.

45. Fuki IV, Kuhn KM, Lomazov IR, et al. The syndecan family of proteoglycans. Novel receptors mediating internalization of atherogenic lipoproteins in vitro. J Clin Invest. 1997;100(6):1611-1622. https://doi.org/10.1172/JCI119685.

46. Gómez Toledo A, Sorrentino JT, et al. A Systems View of the Heparan Sulfate Interactome. J Histochem Cytochem. 2021;69(2):105-119. https://doi.org/10.1369/0022155420988661.

47. Gordts PLSM, Foley EM, Lawrence R, et al. Reducing macrophage proteoglycan sulfation increases atherosclerosis and obesity through enhanced type I interferon signaling. Cell Metab. 2014;20(5):813-826. https://doi.org/10.1016/j.cmet.2014.09.016.

48. Li Y, Wang M, Hong S. Live-Cell Glycocalyx Engineering. Chembiochem. 2023;24(6):e202200707. https://doi.org/10.1002/cbic.202200707.

49. Dogné S, Flamion B. Endothelial Glycocalyx Impairment in Disease: Focus on Hyaluronan Shedding. Am J Pathol. 2020;190(4):768-780. https://doi.org/10.1016/j.ajpath.2019.11.016.

50. Climent B, Simonsen U, Rivera L. Effects of obesity on vascular potassium channels. Curr Vasc Pharmacol. 2014;12(3):438-52. https://doi.org/10.2174/1570161112666140423221622.

51. Mayoral LP, Andrade GM, Mayoral EP, et al. Obesity subtypes, related biomarkers & heterogeneity. Indian J Med Res. 2020;151(1):11-21. https://doi.org/10.4103/ijmr.IJMR_1768_17.

52. Ikezoe T. Thrombomodulin/activated protein C system in septic disseminated intravascular coagulation. J Intensive Care. 2015;3(1):1. https://doi.org/10.1186/s40560-014-0050-7.

53. Lebedev SV. Influence of obesity on endothelium and hemostasis. Journal of Clinical Medicine. 2021;(5):100-107. (In Russ.). https://doi.org/10.17802/2306–1278-2021-5-100-107.

54. Vorobyeva NV. Involvement of mitogen-activated protein kinases p38 and ERK1/2, as well as protein kinase B Akt1/2 in the formation of neutrophil extracellular traps. Moscow University Bulletin. Series 16. Biology. 2023;(4):2. (In Russ.). https://doi.org/10.55959/msu0137-0952-16-78-4-2.

55. Urban M, Wojtkielewicz K, Głowińska B, Peczyńska J. Rozpuszczalna trombomodulina – marker uszkodzenia śródbłonka u dzieci i młodziezy z otyłościa prosta. [Soluble thrombomodulin – a molecular marker of endothelial cell injury in children and adolescents with obesity. Endokrynol Diabetol Chor Przemiany Materii Wieku Rozw. 2005;11(2):73-7. (In Polish).

56. Giri H, Cai X, Panicker SR, et al. Thrombomodulin Regulation of Mitogen-Activated Protein Kinases. Int J Mol Sci. 2019;20(8):1851. https://doi.org/10.3390/ijms20081851.

57. Piché ME, Tchernof A, Després JP. Obesity Phenotypes, Diabetes, and cardiovascular diseases. Circ Res. 2020;126(11):1477-1500. https://doi.org/10.1161/CIRCRESAHA.120.316101.

58. Michels A, Dwyer CN, Mewburn J, et al. Factor Is a Critical Mediator of Deep Vein Thrombosis in a Mouse Model of Diet-Induced Obesity. Arterioscler Thromb Vasc Biol. 2020;40(12):2860-2874. https://doi.org/10.1161/ATVBAHA.120.314690.

59. Vasina LV, Petrishchev NN, Vlasov TD. Endothelial dysfunction and its main markers. Regional Circulation and Microcirculation. 2017;16(1):4-15. (In Russ.). https://doi.org/10.24884/1682-6655-2017-16-1-4-15.

60. Atiq F, O’Donnell JS. Novel functions for von Willebrand factor. Blood. 2024;144(12):1247-1256. https://doi.org/10.1182/blood.2023021915.

61. Dargaud Y, Leuci A, Ruiz AR, Lacroix-Desmazes S. Efanesoctocog alfa: the renaissance of Factor VIII replacement therapy. Haematologica. 2024;109(8):2436-2444. https://doi.org/10.3324/haematol.2023.284498.

62. Campos J, Brill A. von Willebrand Factor: A Loyal Ally of Venous Thrombosis in Obesity. Arterioscler Thromb Vasc Biol. 2020;40(12):2809-2811. https://doi.org/10.1161/ATVBAHA.120.315380.

63. Ragab A, Abousamra NK, Higazy A, Saleh O. Relationship between insulin resistance and some coagulation and fibrinolytic parameters in patients with metabolic syndrome. Lab Hematol. 2008;14(1):1-6. https://doi.org/10.1532/LH96.07017.

64. Sladek V, Šmak P, Tvaroška I. How E-, L-, and P-Selectins Bind to sLe(x) and PSGL-1: A Quantification of Critical Residue Interactions. J Chem Inf Model. 2023;63(17):5604-5618. https://doi.org/10.1021/acs.jcim.3c00704.

65. Zhong L, Huot J, Simard MJ. p38 activation induces production of miR-146a and miR-31 to repress E-selectin expression and inhibit transendothelial migration of colon cancer cells. Sci Rep. 2018;8:2334. https://doi.org/10.1038/s41598-018-20837-9.

66. Panagiotidou S, Anastasiou M, Alcaide P, Perrin MA. Trypanosoma cruzi Exploits Eand P-Selectins To Migrate Across Endothelial Cells and Extracellular Matrix Proteins. Infect Immun. 2021;89(10):e0017821. https://doi.org/10.1128/IAI.00178-21.

67. Singh V, Kaur R, Kumari P, et al. ICAM-1 and VCAM1: Gatekeepers in various inflammatory and cardiovascular disorders. Clin Chim Acta. 2023;548:117487. https://doi.org/10.1016/j.cca.2023.117487.

68. Москалец О. В. Молекулы клеточной адгезии ICAM-1 и VCAM-1 при инфекционной патологии // ТМЖ. 2018. Т. 2, № 72. С. 21–25. [Moskalets OV. Molecules of cellular adhesion ICAM-1 and VCAM-1 in infectious pathology. TMJ. 2018;2(72):21-25. (In Russ.). https://doi.org/10.17802/2306-1278-2018-2-21-25.

69. Martinelli I, Tomassoni D, Moruzzi M, et al. Cardiovascular Changes Related to Metabolic Syndrome: Evidence in Obese Zucker Rats. Int J Mol Sci. 2020;21(6):2035. https://doi.org/10.3390/ijms21062035.

70. Yu GI, Jun SE, Shin DH. Associations of VCAM-1 gene polymorphisms with obesity and inflammation markers. Inflamm Res. 2017;66(3):217-225. https://doi.org/10.1007/s00011-016-1006-2.

71. Wei J, Lin J. Relationship of Polymorphism of Adhesion Molecules VCAM-1 and ICAM-1 with Preeclampsia. Ann Clin Lab Sci. 2020;50(1):79-84.

72. Singh R, Gautam P, Sharma C, Osmolovskiy A. Fibrin and Fibrinolytic Enzyme Cascade in Thrombosis: Unravelling the Role. Life (Basel). 2023;13(11):2196. https://doi.org/10.3390/life13112196.

73. Urano T, Suzuki Y, Iwaki T, et al. Recognition of Plasminogen Activator Inhibitor Type 1 as the Primary Regulator of Fibrinolysis. Curr Drug Targets. 2019;20(16):1695-1701. https://doi.org/10.2174/1389450120666190715102510.

74. Zheng Z, Nakamura K, Gershbaum S, et al. Interacting hepatic PAI-1/tPA gene regulatory pathways influence impaired fibrinolysis severity in obesity. J Clin Invest. 2020; 130(8):4348-4359. https://doi.org/10.1172/JCI135919.

75. Sanchez C, Miller K, Raj R, et al. The Associations Between Obesity and Deep Vein Thrombosis in Patients With Cardiovascular Disease: A Narrative Review. Cureus. 2024;16(8): e66731. https://doi.org/10.7759/cureus.66731.


Review

For citations:


Gerasimenko A.A., Petrushkina Yu.N., Ryzhov A.V., Polozova A.I., Dergacheva E.S., Vlasova T.I. Thromboresistant Endothelial Function in Obesity. Regional blood circulation and microcirculation. 2025;24(4):21-31. (In Russ.) https://doi.org/10.24884/1682-6655-2025-24-4-21-31

Views: 10

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-6655 (Print)
ISSN 2712-9756 (Online)