Influence of photoactivated coproporphirin on microcirculation
https://doi.org/10.24884/1682-6655-2018-17-4-75-80
Abstract
The aim – to investigate the effect of photoactivated coproporphyrin III (KP III) on microcirculation in the rat mesenteric vascular bed. Material and methods. The study was performed on 20 male rats, divided into 4 groups: 1) control; 2) KP III; 3) laser irradiation; 4) laser irradiation on combined with prior administration of the KP III.
The object of the study was venules (20–40 µm) of the mesentery of the small intestine. The study of blood flow velocity in the venules was performed using the method of intravital biomicroscopy. The velocity parameters were registered using a high-speed video camera Basler acA2000 (Germany). Coproporphyrin III (Elast, Russia) at a dose of 10 mg/kg was injected into the tail vein 3 hours before laser irradiation. Irradiation was performed using a Lakhta Milon semiconductor laser apparatus (Qualitek, Russia) (λ=635 nm, 0.1 W/cm2 ; 300 s; 30 J/cm2 ).
Results. Administration of KP III without subsequent irradiation did not affect the blood flow velocity during the entire observation period. Laser irradiation of venules without prior administration of KP III led to an increase in blood flow velocity by 39.1 % (p<0.05). After laser irradiation and administration of KPIII, there was a gradual decrease in flow velocity after the photoactivation process.
Conclusions. We studied the effect of photoactivated KP III on microcirculation in the mesentery of the small intestine of rats. Changes in the blood flow velocity in the venules of the mesentery affected by KP III and laser irradiation develop mainly in the post-radiation period and could be associated with endothelial dysfunction.
About the Author
T. G. GrishachevaRussian Federation
junior researcher of Laser center of Academician,
197022, Saint Petersburg, L’va Tolstogo street, 6-8
References
1. Chuannong Zhou. Mechanisms of tumor destruction caused by photodynamic therapy. Proc. SPIE 5967, 2004 Shanghai International Conference on Laser Medicine and Surgery, 596706 (11 September 2006). Doi: 10.1117/12.639100.
2. Wang W, Moriyama LT, Bagnato VS. Photodynamic therapy induced vascular damage: an overview of experimental PDT. Laser Physics Letters. 2012;10(2):023001. Doi: 10.1088/1612-2011/10/2/023001.
3. Richard L Lipson, Edward J Baldes, Arthur M Olsen. The Use of a Derivative of Hematoporphyrin in Tumor Detection. JNCI: Journal of the National Cancer Institute. 1961:26 (Is. 1):1–11. Available at: https://doi.org/10.1093/jnci/26.1.1 (accessed 18.12.2018).
4. Dougherty TJ, Kaufman JE, Goldfarb A et al. Photoradiation therapy for the treatment of malignant tumors. Cancer Res. 1978;38:2628–2635.
5. Dougherty TJ. Hematoporphyrin derivative for detection and treatment of cancer. J. Surg. Oncol. 1980;15:209–210. Doi:10.1002/jso.2930150303.
6. Eugeny Ph Stranadko, Eugeny Ph Stranadko, Oleg K Skobelkin et al. Photodynamic therapy of cancer: five-year clinical experience”, Proc. SPIE 3191, Photochemotherapy: Photodynamic Therapy and Other Modalities III. 1997;29 Dec. Doi: 10.1117/12.297812.
7. Castano AP, Demidova TN, Hamblin MR. Mechanisms in photodynamic therapy: part one – photosensitizers, photochemistry and cellular localization. Photodiagnosis and Photodynamic Therapy. 2004;1(4):279–293. Available at: http://dx.doi.org/10.1016/s1572-1000(05)00007-4 (accessed 18.12.2018).
8. Beckmann S, Wessel T, Franck B et al. Coproporphyrin II for Photodynamic Therapy. Angew. Chem. Int. Ed. Engl. 1990;29:1395–1397. Doi:10.1002/anie.199013951.
9. Yamamoto M, Nagano T, Okura I et al. Production of singlet oxygen on irradiation of a photodynamic therapy agent, zinc-coproporphyrin III, with low host toxicity. Biometals. 2003;16:591–597.
10. Malkov MA, Petrishchev NN, Mishutkin SN. Razrabotka sposoba fotodinamicheskoi terapii dlya lecheniya neoplasticheskikh novoobrazovanii s ispol’zovaniem fotosensibilizatora na osnove preparata koproporfirin. Fundamental’nye issledovaniya. 2008;1:142–146. (In Russ.).
11. Ozawa H, Asahina T, Murakami H et al. Zinc Coproporphyrin I Derived from Meconium Has an Antitumor Effect Associated with Singlet Oxygen Generation. Fetal Diagn Ther. 2013;33:90–97. Doi: 10.1159/000342419.
12. Toriya M, Yamamoto M, Saeki K et al. Antitumor effect of photodynamic therapy with zincphyrin, zinc-coproporphyrin III, in mice. Biosci Biotechnol Biochem. 2001;65(2):363–370. Doi: 10.1271/bbb.65.363.
13. Saito A, Nagao T, Minamitani H et al. Vascular shut down effect on the microcirculation in photodynamic therapy using zinc coproporphyrin. Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. ‘Magnificent Milestones and Emerging Opportunities in Medical Engineering’ (Cat. No. 97CH36136), Chicago, IL, USA, 1997;5:2294–2295. Doi: 10.1109/IEMBS.1997.758821.
14. Strauss WSL, Sailer R, Schneckenburger Het al. Photodynamic efficacy of naturally occurring porphyrins in endothelial cells in vitro and microvasculature in vivo. Journal of Photochemistry and Photobiology B: Biology. Elsevier BV; 1997;39(2):176–84. Available at: http://dx.doi.org/10.1016/ s1011-1344(97)00002-x (accessed 18.12.2018).
15. Malkov MA, Mishutkin SN, Momot NN. Sposob vydeleniya i ochistki koproporfirina III. Patent na izobretenie RUS 2334511. 17.11.2006. 2008. (In Russ.).
16. Belousova IM, Dobrun MV, Galebskaya LV et al. New preparation based on coproporphyrin III for photoluminescence diagnostics and photodynamic therapy / Rosanov NN, Venediktov VY, editors. Laser Optics 2010;16 Jul 16. Available at: http://dx.doi.org/10.1117/12.896108 (accessed 18.12.2018).
17. Belozerceva IV, Dravolina OA, Tur MA. Rukovodstvo po ispol’zovaniyu laboratornyh zhivotnyh dlya nauchnyh i uchebnyh celej v PSPbGMU im. akad. I. P. Pavlova / eds by EE Zvartau. SPb.: PSPbGMU, 2014, 80 p. (In Russ.).
18. Mikhaylova IA. The link between the parameters of the thrombus formation process and blood flow velocity in the microvessels of the rat mesentery. Fiziol Zh SSSR Im IM Sechenova. 1991;77(6):95–99. (In Russ.).
19. Barabanshchikova GV, Kuz’min DN, Kuvaldin EV, Malkov MA, Mel’nikov AS. Vliyanie lazerindutsirovannoi fotokhimicheskoi reaktsii koproporfirina III na funktsional’nye svoistva sosudov mikrotsirkulyatornogo rusla. Regionarnoe krovoobrashchenie i mikrotsirkulyatsiya. 2004; 3(13):64–67. (In Russ.).
20. Markwardt NA, Haj-Hosseini N, Hollnburger B et al. 405 nm versus 633 nm for protoporphyrin IX excitation in fluorescence-guided stereotactic biopsy of brain tumors. J. Biophotonics. 2015;9:901–912.
21. Petrishchev NN., Gryshachova TG, Mikhailova IA., Chefu SG., Kuvardin ES. Possible influence of temperature effects on microvessel photosensitivity in the presence of photosensitizers. Laser medicine. 2015; 19(1):29–32. (In Russ.).
Review
For citations:
Grishacheva T.G. Influence of photoactivated coproporphirin on microcirculation. Regional blood circulation and microcirculation. 2018;17(4):75-80. (In Russ.) https://doi.org/10.24884/1682-6655-2018-17-4-75-80