Theory of active lymph transport: morphofunctional foundations and clinical aspects
https://doi.org/10.24884/1682-6655-2020-19-3-80-89
Abstract
About the Authors
N. A. BubnovaRussian Federation
Bubnova Natalya A. – MD Professor of the Department of General Surgery
6-8, L’va Tolstogo street, Saint Petersburg, 197022
R. P. Borisova
Russian Federation
Borisova Rimma P. – MD Professor
47, Piskarevskii str., Saint Petersburg, 195067
N. A. Kubyshkina
Russian Federation
Kubyshkina Natalya A. – Associate Professor of the Department of Normal Physiology
47, Piskarevskii str., Saint Petersburg, 195067
References
1. Breslin JW, Yang Y, Scallan JP, Sweat RS, Adderley SP, Murfee WL. Lymphatic Vessel Network Structure and Physiology. Compr Physiol. 2018 Dec 13;9(1):207–299. Doi: 10.1002/cphy.c180015.
2. von der Weid PY, Rahman M, Imtiaz MS, van Helden DF. Spontaneous transient depolarizations in lymphatic vessels of the guinea pig mesentery: pharmacology and implication for spontaneous contractility. Am J Physiol Heart Circ Physiol. 2008 Nov;295(5):H1989–2000. Doi: 10.1152/ajpheart.00007.2008.
3. Potashov LV, Bubnova NA, Borisov AV et al. Surgical lymphology. SPb., 2000. (In Russ.).
4. Lobov GI. Mechanisms of regulation of the active transport function of the lymphatic vessels. Immunogenesis and lymph flow. St. Petersburg, SPbGMA, 2001;2:17–25. (In Russ.).
5. Semo J, Nicenboim J, Yaniv K. Development of the lymphatic system: new questions and paradigms. Development. 2016 Mar 15;143(6):924–935. Doi: 10.1242/dev.132431.
6. Yuan KC, Fang JF, Hsieh SY, Shih HN. Comparative proteomic analysis of rodent plasma and mesenteric lymph. Chin J Physiol. 2013 Jun 30;56(3):163–173. Doi: 10.4077/CJP.2013.BAB116.
7. Wang Y, Baeyens N, Corti F, Tanaka K, Fang JS, Zhang J, Jin Y, Coon B, Hirschi KK, Schwartz MA, Simons M. Syndecan 4 controls lymphatic vasculature remodeling during mouse embryonic development. Development. 2016 Dec 1;143(23):4441–4451. Doi: 10.1242/dev.140129.
8. Orlov RS, Borisova RP. Contraction of the lymphatic vessels, their regulation and functional role. West. USSR Academy of Medical Sciences. 1982;7:75–83. (In Russ.).
9. Orlov RS, Borisov AV, Borisova RP. Lymphatic vessels. The structure and mechanisms of contractile activity. Leningrad, Nauka, 1983:254. (In Russ.).
10. Borisov AV. Functional morphology of the lymphangion. Lymphatic vessel. Leningrad, LSGMI, 1984:5–13. (In Russ.).
11. Lobov GI, Kubyshkina NA. Contractile function of the lymphatic vessels with acidosis. Structural and functional foundations of the organization of the lymphatic system. SPb, SPbGMA, 1998:84–86. (In Russ.).
12. Orlov RS, Borisova RP, Bubnova NA, Gashev AA, Erofeev NP, Lobov GI, Pankova MN, Petunov SG. Lymphatic vessels: tone, motility, regulation. Physiological Journal of the USSR named after I. M. Sechenov. 1991:63. (In Russ.).
13. Erofeev NP, Vcherashnii DB. Modern ideas about the physiology of lymph flow. Medicine XXI century. 2006;3(4):40–43. (In Russ.).
14. Borisov AV. The design of the lymphangion is normal and pathological. Regional blood circulation and microcirculation. 2005;2(14):66–68. (In Russ.).
15. Borisov AV. Anatomy of the lymphangion. Nalchik, Polygraphservice, 2007:296. (In Russ.).
16. Horstman E. Uber die funktionelle struktur die mesentelialen lymfgefasse. Morph. Jb. 1952;91(4):583–610.
Review
For citations:
Bubnova N.A., Borisova R.P., Kubyshkina N.A. Theory of active lymph transport: morphofunctional foundations and clinical aspects. Regional blood circulation and microcirculation. 2020;19(3):80-89. (In Russ.) https://doi.org/10.24884/1682-6655-2020-19-3-80-89