Preview

Regional blood circulation and microcirculation

Advanced search

COVID-19 and vascular disorders (literature review)

https://doi.org/10.24884/1682-6655-2020-19-3-90-98

Abstract

The review describes pathogenesis of the disease caused by the new SARS-CoV-2 virus. It infects the human cells by linking angiotensin-converting enzyme-2 (ACE2) and a number of other receptors. The virus imbalances the renin-angiotensin system, results to vasoconstriction and acts like pro-inflammatory agent. ACE2 is exposed on the alveolar epithelium cell surface. It is the main gates for virus entering and damaging of the respiratory system resulted in an acute respiratory distress syndrome. The injuring of the pulmonary vessel endothelium is the most important part of the COVID-19 pathogenesis. ACE2 of the endothelial and smooth muscle cell surface upon the SARS-CoV-2 infection facilitates the injury of cardiovascular system. The development of endotheliitis induced by «cytokine storm» leads to the main signs of the disease and the multiple disorder of the microcirculation. The investigation of that condition has a prognostic value and determines the treatment especially in critically ill patients. Systemic endothelial dysfunction upon the COVID-19 largely triggers the hemostasis disorders. High activity of platelets adhesion and aggregation, blood coagulation in died COVID-19 patients, disorder of fibrinolysis system functional activity could be induced by the endothelium activation. The unchanged anticoagulation blood activity in the COVID-19 patients distinguishes them from the patients with disseminated intravascular coagulation. Monitoring of the hemostasis system in COVID-19 is important for the disease severity assess and its prognosis, for justin-time correction of detected deviations.

About the Authors

N. N. Petrishchev
Pavlov University
Russian Federation

Petrishchev Nikolay N. – Doctor of Medical Sciences, Professor, Honored Scientist of the Russian Federation, Professor of the Department of Pathophysiology with the course of clinical pathophysiology, Head of the Center for Laser Medicine, Head of the Russian Association for Regional H dynamics and Microcirculation

6-8 L’va Tolstogo street, Saint Petersburg, 197022



O. V. Khalepo
Smolensk State Medical University
Russian Federation

Khalepo Olga V. – Candidate of Medical Sciences, Docent, Head of the Department of Pathological Physiology

28, Krupskoy str., Smolensk, 214019



Y. A. Vavilenkova
Smolensk State Medical University
Russian Federation

Vavilenkova Yulia A. – Senior Lecturer, Department of Pathological Physiology

28, Krupskoy str., Smolensk, 214019



T. D. Vlasov
Pavlov University
Russian Federation

Vlasov Timur D. – Doctor of Medical Sciences, Professor, Head of the Department of Pathophysiology with the course of clinical pathophysiology, Director of the Scientific and Educational Institute of Biomedicine

6-8 L’va Tolstogo street, Saint Petersburg, 197022



References

1. Kai H, Kai M. Interactions of Coronaviruses with ACE2, Angiotensin II, and RAS Inhibitors-Lessons From Available Evidence and Insights Into COVID-19. Hypertens Res. 2020;43(7):648–654. Doi: 10.1038/s41440-020-0455-8.

2. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367:1260–1263. Doi:10.1126/science.abb2507.

3. Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, Donovan M, Woolf B, Robison K, Jeyaseelan R, Breitbart RE, Acton S. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ Res. 2000;87(5):E1–E9. Doi:10.1161/01.res.87.5.e1.

4. Bosnyak S. Relative affinity of angiotensin peptides and novel ligands at AT1 and AT2 receptors. Clin. Sci. (Lond.). 2011;121:297–303. Doi: 10.1042/cs20110036.

5. Stawiski EW, Diwanji D, Suryamohan K et al. Human ACE2 receptor polymorphisms predict SARS-CoV-2 susceptibility. bioRxiv. 2020; April 10. Doi: 10.1101/2020.04.07.024752.

6. Vaduganathan M, Vardeny O, Pharm D, Michel PDT et al. Renin-Angiotensin-Aldosterone System Inhibitors in Patients with Covid-19. N Engl J Med. 2020;(382):1653–1659. Doi: 10.1056/NEJMsr2005760.

7. Pinto BGG., Antonio ER, Oliveira AER., Singh Y et al. АПФ2 Expression Is Increased in the Lungs of Patients With Comorbidities Associated With Severe COVID-19. J Infect Dis. 2020; Jun 11. Doi: 10.1093/infdis/jiaa332.

8. Fernández-Ruiz I .RAAS Inhibitors Do Not Increase the Risk of COVID-19 Nat Rev Cardiol.2020;17(7):383. Doi: 10.1038/s41569-020-0401-0.

9. Hamming I, Timens W, Bulthuis MLC, Lely AT, Navis GJ, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203(2):631–637. Doi: 10.1002/path.1570.

10. Chen L, Li X, Chen M, Feng Y, Xiong C. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovasc Res. 2020;(30). Doi: 10.1093/cvr/cvaa078.

11. Bombardini T, Picano E. Angiotensin-Converting Enzyme 2 as the Molecular Bridge Between Epidemiologic and Clinical Features of COVID-19. The Canadian Journal of Cardiology. 2000;36(5):784.e1–784.e2. Doi:10.1016/j.cjca.2020.03.026.

12. Zhang, J, Xie, B, Hashimoto K. Current status of potential therapeutic candidates for the COVID-19 crisis. Brain Behav. Immun. 2020. Doi: 10.1016/j.bbi.2020.04.046.

13. Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Muller MA, Drosten C, Pohlmann S. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;(181):271–280.e278. Doi:10.1016/j.cell.2020.02.052.

14. Gebhard C, Regitz-Zagrosek V, Neuhauser HK, Morgan R, Impact of sex and gender on COVID-19 outcomes in Europe. Biol Sex Differ. 2020;(11):29. Doi: 10.1186/s13293020-00304-9.

15. Clinckemalie L, Spans L, Dubois V, Laurent M, Helsen C, Joniau S, Claessens F. Androgen Regulation of the TMPRSS2 Gene and the Effect of a SNP in an Androgen Response Element. Mol Endocrinol. 2013;27(12):2028–2040. Doi: 10.1210/me.2013-1098.

16. Baratchian M, McManus J, Berk M, Nakamura F et al. No evidence that androgen regulation of pulmonary TMPRSS2 explains sex-discordant COVID-19 outcomes. bioRxiv. 2020. Doi: 10.1101/2020.04.21.051201.

17. Ulrich H, Pillat M. CD147 as a Target for COVID-19 Treatment: Suggested Effects of Azithromycin and Stem Cell Engagement. Stem Cell Rev Rep. 2020; Apr 20:1–7. Doi: 10.1007/s12015-020-09976-7.

18. Raj VS et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC.Nature. 2013;495(7440):251–254. Doi: 10.1038/nature12005.

19. Qi F et al. Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses. Biochem Biophys Res Commun. 2020;526(1):135–140. Doi: 10.1016/j.bbrc.2020.03.044.

20. Varga Z, Flammer AJ, Steiger P et al. Endothelial Cell Infection and Endotheliitis in COVID-19. Lancet. 2020;2(395(10234)):1417–1418. Doi: 10.1016/S01406736(20)30937-5.

21. Huertas A, Montani D, Savale L et al. Endothelial Cell Dysfunction: A Major Player in SARS-CoV-2 Infection (COVID-19)?. Eur Respir J. 2020; Jun 18. Doi: 10.1183/13993003.01634-2020.

22. Copin MC, Parmentier E, Duburcq T, Poissy J, Mathieu D; Lille COVID-19 ICU and Anatomopathology Group. Time to consider histologic pattern of lung injury to treat critically ill patients with COVID-19 infection. Intensive Care Med. 2020:1–3. Doi:10.1007/s00134-020-06057-8.

23. Ackermann M, Verleden SE, Kuehnel M et al., Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N Engl J Med. 2020;(383):120–128. Doi: 10.1056/NEJMoa2015432.

24. Teuwen LA, Geldhof V, Pasut A, Carmeliet P. COVID-19: the vasculature unleashed. Nat Rev Immunol. 2020;May 21:1–3. Doi: 10.1038/s41577-020-0343-0.

25. Imai Y, Kuba K, Rao S et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 2005;(436):112–116. Doi: 10.1038/nature03712.

26. Gattinoni L, Chiumello D, Caironi P, Busana M, Romitti F, Brazzi L, Camporota L. COVID-19 pneumonia: different respiratory treatment for different phenotypes?. Intensive Care Medicine. 2020. Doi: 10.1007/s00134-020-06033-2.

27. Sardu С, Gambardella J, Morelli MB et al. Hypertension, Thrombosis, Kidney Failure, and Diabetes: Is COVID-19 an Endothelial Disease?. A Comprehensive Evaluation of Clinical and Basic Evidence. J Clin Med. 2020;9(5):1417. Doi: 10.3390/jcm9051417.

28. Li XC, Zhang J, Zhuo JL. The vasoprotective axes of the renin-angiotensin system: physiological relevance and therapeutic implications in cardiovascular, hypertensive and kidney diseases. Pharmacol Res. 2017;(125):21–38. Doi: 10.1016/j.phrs.2017.06.005.

29. Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020;46(4):586–590. Doi: 10.1007/s00134-020-05985-9.

30. Li H, Liu L, Zhang D, Xu J, Dai H, Tang N. SARSCoV-2 and viral sepsis: observations and hypotheses. Lancet. 2020;(395):1517–1520. Doi: 10.1016/S0140-6736(20)30920-X.

31. Colantuoni A, Martini R, Caprari P et al. COVID-19 Sepsis and Microcirculation Dysfunction. Front. Physiol. 2020; 26 June. Doi: 10.3389/fphys.2020.00747.

32. Martini R. The compelling arguments for the need of microvascular investigation in COVID-19 critical patients. Clin Hemorheol Microcirc. 2020;75(1):27–34. Doi: 10.3233/CH-200895.

33. Jung EM, Stroszczynski C, Jungc F. Contrast enhanced ultrasonography (CEUS) to detect abdominal microcirculatory disorders in severe cases of COVID-19 infection: First experience. Clinical Hemorheology and Microcirculation. 2020;(74):353–361. Doi: 10.3233/CH-209003.

34. Levi M, Thachil J, Iba T, Levy JH. Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol. 2020;7(6):e438–e440. Doi: 10.1016/S23523026(20)30145-9.

35. Goshua G, Pine AB, Meizlish ML, Chang CH, Zhang H, Bahel P, Baluha A, Bar N, Bona RD, Burns AJ, Dela Cruz CS, Dumont A, Halene S, Hwa J, Koff J, Menninger H, Neparidze N, Price C, Siner JM, Tormey C, Rinder HM, Chun HJ, Lee AI. Endotheliopathy in COVID-19-associated coagulopathy: evidence from a single-centre, cross-sectional study. Lancet Haematol. 2020;7(8):e575–e582. Doi: 10.1016/S2352-3026(20)30216-7.

36. Panigada M, Bottino N, Tagliabue P, Grasselli G, Novembrino C, Chantarangkul V, Pesenti A, Peyvandi F, Tripodi A. Hypercoagulability of COVID-19 patients in intensive care unit. A report of thromboelastography findings and other parameters of hemostasis. J Thromb Haemost. 2020;18(7):17381742. Doi: 10.1111/jth.

37. Llitjos JF, Leclerc M, Chochois C, Monsallier JM, Ramakers M, Auvray M, Merouani K. High incidence of venous thromboembolic events in anticoagulated severe COVID-19 patients. J Thromb Haemost. 2020;18(7):1743–1746. Doi: 10.1111/jth.14869.

38. Klok FA, Kruip MJHA., van der Meer NJM., Arbous MS, Gommers D, Kant KM, Kaptein FHJ., van Paassen J, Stals MAM, Huisman MV, Endeman H. Confirmation of the high cumulative incidence of thrombotic complications in critically ill ICU patients with COVID-19: an updated analysis. Thromb Res. 2020;(191):148–150. Doi: 10.1016/j.thromres.2020.04.041.

39. Lodigiani C, Iapichino G, Carenzo L, Cecconi M, Ferrazzi P, Sebastian T, Kucher N, Studt JD, Sacco C, Alexia B, Sandri MT, Barco S. Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy. Thromb Res. 2020;(191):9–14. Doi: 10.1016/j.thromres.2020.04.024.

40. Boonyawat K, Crowther MA. Venous thromboembolism prophylaxis in critically ill patients. Semin Thromb Hemost. 2015;41(1):68–74. Doi: 10.1055/s-0034-1398386.

41. Nagashima S, Mendes MC, Camargo Martins AP, Borges NH, Godoy TM, Miggiolaro AFRDS., da Silva Dezidério F, Machado-Souza C, de Noronha L. Endothelial Dysfunction and Thrombosis in Patients With COVID-19. Arterioscler Thromb Vasc Biol. 2020. Doi: 10.1161/ATVBAHA.120.314860.

42. Xu P, Zhou Q, Xu J. Mechanism of thrombocytopenia in COVID-19 patients. Ann Hematol. 2020;99(6):1205–1208. Doi: 10.1007/s00277-020-04019-0.

43. Escher R, Breakey N, Lämmle B. Severe COVID-19 infection associated with endothelial activation. Thromb Res. 2020;(190):62. Doi: 10.1016/j.thromres.2020.04.014.

44. Siguret V, Voicu S, Neuwirth M, Delrue M, Gayat E, Stépanian A, Mégarbane B. Are antiphospholipid antibodies associated with thrombotic complications in critically ill COVID-19 patients?. Thromb Res. 2020;(195):74–76. Doi: 10.1016/j.thromres.2020.07.016.

45. Assinger A. Platelets and infection – an emerging role of platelets in viral infection. Front Immunol. 2014;(5):649. Doi: 10.3389/fimmu.2014.00649.

46. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;18(4):844–847. Doi: 10.1111/jth.14768.

47. Helms J, Tacquard C, Severac F, Leonard-Lorant I, Ohana M, Delabranche X, Merdji H, Clere-Jehl R, Schenck M, Fagot Gandet F, Fafi-Kremer S, Castelain V, Schneider F, Grunebaum L, Anglés-Cano E, Sattler L, Mertes PM, Meziani F. High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med. 2020;(46):1089–1098. Doi: 10.1007/s00134-02006062-x.

48. Asakura H, Ontachi Y, Mizutani T, Kato M, Saito M, Kumabashiri I, Morishita E, Yamazaki M, Aoshima K, Nakao S. An enhanced fibrinolysis prevents the development of multiple organ failure in disseminated intravascular coagulation in spite of much activation of blood coagulation. Crit Care Med. 2001;(29):1164–1168. Doi: 10.1097/00003246-20010600000015.

49. Xiao M, Zhang Y, Zhang S, Qin X, Xia P, Cao W, Jiang W, Chen H, Ding X, Zhao H, Zhang H, Wang C, Zhao J, Sun X, Tian R, Wu W, Wu D, Ma J, Chen Y, Zhang D, Xie J, Yan X, Zhou X, Liu Z, Wang J, Du B, Qin Y, Gao P, Lu M, Hou X, Wu X, Zhu H, Xu Y, Zhang W, Li T, Zhang F, Zhao Y, Li Y, Zhang S. Brief Report: Anti-phospholipid antibodies in critically ill patients with Coronavirus Disease 2019 (COVID-19). Arthritis Rheumatol. 2020. Doi: 10.1002/art.41425.

50. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. Doi: 10.1016/S0140-6736(20)30183-5.

51. Zhou F, Yu T, Du R et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–1062. Doi: 10.1016/S01406736(20)30566-3.


Review

For citations:


Petrishchev N.N., Khalepo O.V., Vavilenkova Y.A., Vlasov T.D. COVID-19 and vascular disorders (literature review). Regional blood circulation and microcirculation. 2020;19(3):90-98. (In Russ.) https://doi.org/10.24884/1682-6655-2020-19-3-90-98

Views: 3023


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-6655 (Print)
ISSN 2712-9756 (Online)