The role of gaseous mediators (CO, NO and H2S) in the regulation of blood circulation: analysis of the participation of blood cell microrheology
https://doi.org/10.24884/1682-6655-2021-20-1-91-99
Abstract
Among the signaling molecules involved in the regulation of intra- and intercellular systems in various types of cells, a special place is occupied by gaseous compounds – gasotransmitters (GTs). Currently, the most studied are three molecules: nitrogen oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S). For them, the enzymatic systems of intracellular synthesis and degradation have been determined, the physiological effect has been proved, and the intracellular mechanisms have been determined. Changes in the work of these mechanisms under the influence of GTs causes the development of physiological and/or pathophysiological reactions. These GTs are involved in the regulation of various organs and systems of the human body under normal and pathological conditions, including the structure and function of the circulatory system. In this article, special attention is paid to the influence of all three GTs and their donors on the vascular and hemorheological aspect of the work of blood circulation, and especially on an underdeveloped problem – the microrheology of erythrocytes. It has been shown that all three GTs, along with the well-known vasodilating effect, reduce the adhesion and aggregation of platelets and leukocytes, as well as moderately stimulate the deformability of erythrocytes and strongly inhibit their aggregation. The performed analysis of the data indicates that, along with the specific signaling cascades for each GT, the use of a common signaling pathway associated with soluble guanylate cyclase and NO synthase was also revealed in microrheological responses. The intersection of signaling pathways triggered by NO, CO and H2S on common effectors, as well as their interaction with each other (cross-talk), can determine the final, resulting functional response of the cell.
Keywords
About the Author
A. V. MuravyovRussian Federation
Muravyov Aleksey V. – MD (Biology), PhD, Professor, Department of Medical and Biological Fundamentals of Sports
108/1, Respublikanskaya str., Yaroslavl, 150000
References
1. Li H, Förstermann U. Nitric oxide in the pathogenesis of vascular disease. The Journal of Pathology. 2000;190(3):244– 254. Doi: 10.1002/(SICI)1096-9896(200002)190.
2. Mustafa AK, Gadalla MM, Snyder SH. Signaling by gasotransmitters. Sci Signal. 2009;2(68):2. Doi: 10.1126/scisignal.268re2.PATH575>3.0.CO;2-8.
3. Sélley E, Kun S, Szijártó IA et al. Exenatide induces aortic vasodilation increasing hydrogen sulphide, carbon monoxide and nitric oxide production. Cardiovascular Diabetology. 2014;(13):69–76. Doi: 10.1186/1475-2840-13-69.
4. Belew M, Quazi F, Willmore W, Aitken S. Kinetic characterization of recombinant human cystathionine β-synthase purified from E. coli. Protein Expression and Purification. 2009;(64):139–145. Doi: 10.1016/j.pep.2008.10.012.
5. Sitdikova GF, Yakovlev AV, Zefirov AL. Gasotransmitters: from the toxic effects to the regulation of cellular function and clinical application. Bulletin of Siberian Medicine. 2014;13(6):185–200. (In Russ.). Doi: 10.20538/1682-0363-2014-6-185-200.
6. Martelli A, Testai L, Breschi MC, Lawson K, McKay NG, Miceli F, Taglialatela M, Calderone V. Vasorelaxation by hydrogen sulphide involves activation of Kv7 potassium channels. Pharmacol Res. 2013;(70):27–34. Doi: 10.1016/j.phrs.2012.12.005.
7. Jaggar JH, Li A, Parfenova H, Liu J, Umstot ES, Dopico AM, Leffler CW. Heme is a carbon monoxide receptor for large-conductance Ca2+-activated K+ channels. Circ Res. 2005;(97):805–812. Doi: 10.1161/01.RES.0000186180.47148.7b.
8. Wang R. Gasotransmitters: growing pains and joys. Trends Biochem Sci. 2014;39(5):227–232. Doi: 10.1016/j.tibs.2014.03.003.
9. Ignaro LG, Buga GM, Wood KS. Endothelium derived relaxing factor produced and released from artery and vein is nitric oxide. Proc. Nat. Acad. Shi. USA. 1987;(84):9265–9269. Doi: 10.1073/pnas.84.24.9265.
10. Dessy C, Ferron O. Pathophysiological Roles of Nitric Oxide: In the Heart and the Coronary Vasculature. Current Medical Chemistry – Anti-Inflammatory & Anti-Allergy Agents. 2004;3(3):207–216. Doi: 10.2174/1568014043355348.
11. Derbyshire ER, Marletta MA. Structure and regulation of soluble guanylate cyclase. Annu. Rev. Biochem. 2012;(81):533– 539. Doi: 10.1146/annurev-biochem-050410-100030.
12. Wobst J, Rumpf PM, Dang TA, Segura-Puimedon M, Erdmann J, Schunkert H. Molecular variants of soluble guanylyl cyclase affecting cardiovascular risk. Circ. J. 2015; (79):463–469. Doi: 10.1253/circj.CJ-15-0025.
13. Irwin C, Roberts W, Naseem KM. Nitric oxide inhibits platelet adhesion to collagen through cGMP-dependent and independent mechanisms: the potential role for S-nitrosylation. Platelets. 2009;(20):478-486. Doi: 10.3109/09537100903159375.
14. Forstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2012;33(7):829–837. Doi: 10.1093/eurheartj/ehr304.
15. Buerk DG, Barbee KA, Jaron D. Nitric oxide signaling in the microcirculation. Crit Rev Biomed Eng. 2011;39(5): 397–433.
16. Popel AS, Johnson PC. Microcirculation and Hemorheology. Annu. Rev. Fluid. Mech. 2005;(37):43–69. Doi: 10.1146/annurev.fluid.37.042604.133933.
17. Salazar Vázquez, Tsai AG, Intaglietta M. Nonlinear cardiovascular regulation consequent to changes in blood viscosity. Clin. Hemorheol. Microcirc. 2011;49(1–4):29–36. Doi: 10.3233/CH-2011-1454.
18. Sprague RS, Ellsworth ML. Erythrocyte-derived ATP and perfusion distribution: role of intracellular and intercellular communication. Microcirculation. 2012;19(5):430–439. Doi: 10.1111/j.1549-8719.2011.00158.x.
19. Kleinbongard P, Keymel S, Kelm M. New functional aspects of the L-arginine-nitric oxide metabolism within the circulating blood. Thromb Haemost. 2007;98(5):970–974.
20. Uyuklu M, Meiselman HJ, Baskurt OK. Role of hemoglobin oxygenation in the modulation of red blood cell mechanical properties by nitric oxide. Nitric Oxide. 2009;(21):20–26. Doi: 10.1016/j.niox.2009.03.004.
21. Ulker P, Sati L, Celik-Ozenci C, Meiselman HJ, Baskurt OK. Mechanical stimulation of nitric oxide synthesizing mechanisms in erythrocytes. Biorheology. 2009;46(2):121–132. Doi: 10.3233/BIR-2009-0532.
22. Mozar A, Connes P, Collins B, Hardy-Dessources MD, Romana M, Lemonne N, Bloch W, Grau M. Red blood cell nitric oxide synthase modulates red blood cell deformability in sickle cell anemia. Clin. Hemorheol. Microcirc. 2016;(64):47– 53. Doi: 10.3233/CH-162042.
23. Muravyov AV, Antonova N, Tikhomirova IA. Red blood cell micromechanical responses to hydrogen sulfide and nitric oxide donors: Analysis of crosstalk of two gasotransmitters (H2 S and NO). Series on Biomechanics. 2019;(33):34–40.
24. Feelisch M, Kotsonis P, Siebe J, Clement B, Schmidt HH. The soluble guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3,-a] quinoxalin-1-one is a nonselective heme protein inhibitor of nitric oxide synthase and other cytochrome P-450 enzymes involved in nitric oxide donor bioactivation. Mol. Pharmacol. 1999;56(2):243–253. Doi: 10.1124/mol.56.2.243.
25. Starzyk D, Korbut R, Gryglewski RJ. Effects of nitric oxide and prostacycline on deformability and aggregability of red blood cells of rats ex vivo and in vitro. J Physiol Pharmacol. 1999;(50):629–637.
26. Naseem KM. The role of nitric oxide in cardiovascular diseases. Mol Aspects Med. 2005; 26(1–2):33–65. Doi: 10.1016/j.mam.2004.09.003.
27. Wallace JL, Ianaro A. Signal Transduction and the Gasotransmitters. NO, CO and H2 S in Biology and Medicine. Totowa, Humana Press, 2004:377.
28. Mancardi D, Penna C, Merlino A, Del Soldato P. Physiological and pharmacological features of the novel gasotransmitter: Hydrogen sulfide. Biochimica et Biophysica Acta. 2009; (1787):864–872. Doi: 10.1016/j.bbabio.2009.03.005.
29. ShenY, Shen Z, Luo S, Guo W, Zhu YiZ. The Cardioprotective Effects of Hydrogen Sulfide in Heart Diseases: From Molecular Mechanisms to Therapeutic Potential. Oxidative Medicine and Cellular Longevity. 2015. Article ID: 925167:13. Doi: 10.1155/2015/925167.
30. Kamoun H. H2S, a new neuromodulator. Medecine/Sciences. 2004;20(6–7):697–700. Doi: 10.1051/medsci/2004206-7697.
31. Giuffrè A, Vicente JB. Hydrogen Sulfide Biochemistry and Interplay with Other Gaseous Mediators in Mammalian Physiology. Oxid. Med. Cell Longev. 2018:6290931. Doi: 10.1155/2018/6290931.
32. Beltowski J. Hydrogen sulfide as a biologically active mediator in the cardiovascular system. Postepy. Hig. Med. Dosw. 2004;(58):285–291.
33. Geng B, Yang J, Qi Y, Zhao J, Peng Y, Du J, Tang C. H2 S generated by heart in rat and its effects on cardiac function. Biochem.Biophys. Res. Commun. 2004;(313):362–368. Doi: 10.1016/j.bbrc.2003.11.130.
34. Smith RP. A short history of hydrogen sulfide. American Scientist. 2010;(98):6–9. Doi: 10.1511/2010.82.6.
35. Zhao, Weimin, Rui Wang. H2S-induced vasorelaxation and underlying cellular and molecular mechanisms. Am J Physiol Heart Circ Physiol. 2002;(283):474–480. Doi: 10.1152/ajpheart.00013.
36. Truss NJ, Warner TD. Gasotransmitters and platelets. Pharmacol. Ther. 2011;(132):196–203. Doi: 10.1016/j.pharmthera.2011.07.001.
37. Green BD, Hand KV, Dougan JE, McDonnell BM, Cassidy RS, Grieve DJ. GLP-1 and related peptides cause concentration-dependent relaxation of rat aorta through a pathway involving KATP and cAMP. Arch Biochem Biophys. 2008;(478):136–142. Doi: 10.1016/j.abb.2008.08.001.
38. Leffler ChW, Parfenova H, Jaggar JH. Carbon monoxide as an endogenous vascular modulator. Am. J. Physiol. Heart Circ. Physiol. 2011;(301):1–11. Doi: 10.1152/ajpheart.00230.2011.
39. Durante W, Peyton KJ, Schafer AI. Platelet-derived growth factor stimulates heme oxygenase-1 gene expression and carbon monoxide production in vascular smooth muscle cells. Arterioscler. Thromb. Vasc.Biol. 1999;(19):2666–2672. Doi: 10.1161/01.ATV.19.11.2666.
40. Wang R. Resurgence of carbon monoxide: an endogenous gaseous vasorelaxing factor. Can J 1998;76(1):1–15. Doi: 10.1139/cjpp-76-1-1.
41. Brune B, Ullrich V. Inhibition of platelet aggregation by carbon monoxide is mediated by activation of guanylate cyclase. Mol Pharmacol. 1987;(32):497–504.
42. Shinobu Hayashi, Rina Takamiya, Tokio Yamaguchi, Kenji Matsumoto, Shinichiro J. Tojo, Takuya Tamatani, Masaki Kitajima, Nobuya Makino, Yuzuru Ishimura, Makoto Suematsu. Induction of Heme Oxygenase-1 Suppresses Venular Leukocyte Adhesion Elicited by Oxidative Stress: Role of Bilirubin Generated by the Enzyme. Circulation Research. 1999; 85(8): 663–671. Doi: 10.1161/01.RES.85.8.663.
43. Jaggar JH, Parfenova H, Liu J. Heme is a carbon monoxide receptor for large-conductance Ca2+-activated K+ channels. Circ. Res. 2007;(97):805–812.
44. Koneru P, Leffler CW. Role of cyclic GMP in carbon monoxide induced vasodilation in piglets. Am J Physiol Heart Circ Physiol. 2004;(286):304–309. Doi: 10.1152/ajpheart.00810.2003.
45. Ellsworth ML, Ellis CG, Goldman D. Erythrocytes: oxygen sensors and modulators of vascular tone. Physiology. 2009;(24):107–116. Doi: 10.1152/physiol.00038.2008.
Review
For citations:
Muravyov A.V. The role of gaseous mediators (CO, NO and H2S) in the regulation of blood circulation: analysis of the participation of blood cell microrheology. Regional blood circulation and microcirculation. 2021;20(1):91-99. (In Russ.) https://doi.org/10.24884/1682-6655-2021-20-1-91-99