Microcirculatory disorders in the forearm skin in the acute phase of COVID-19 according to laser Doppler flowmetry
https://doi.org/10.24884/1682-6655-2022-21-3-56-63
Abstract
Aim – to study the functional state of the microvessels of the forearm skin in the acute phase of COVID-19 using the LDF method. Materials and methods. The study included 53 patients of moderate COVID-19. During the first day of hospitalization, all patients underwent LDF with amplitude-frequency Fourier analysis of tissue perfusion fluctuations using a portable LDF device with remote data transmission via Bluetooth protocol. The comparison group (CG) consisted of 28 healthy subjects matched in age and gender. Results. Patients in the acute phase of COVID-19, relative to CG, are noticed a decrease in the amplitude of endothelial vasomotions (Ae) – 0.0149 and 0.0198 PU (p<0.00005), an increase in the amplitude of myogenic vasomotions (Am) – 0.078 and 0.061 PU (p<0.01), an increase in the amplitude of blood flow pulse oscillations – 1.38 and 1.18 PU (p<0.01) and an increase in respiratory related blood flow oscillations – 0.48 and 0.29 PU (p<0.000001) respectively. Conclusion. The systemic inflammatory process in the acute phase of COVID-19 at the level of the skin microvasculature is characterized by: 1) vasomotor dysfunction of the endothelium; 2) a decrease of the perfusion efficiency of the endothelial regulation mechanism; 3) a decrease of the basal tone of smooth muscle cells of precapillary arterioles and capillary sphincters; 4) an increase of arterial blood flow to the capillary bed; 5) violation of the blood outflow from the microvasculature with the development of venular plethora.
About the Authors
A. A. FedorovichRussian Federation
Fedorovich Andrey A. – Candidate of Medical Sciences, Senior researcher laboratory of microcirculation and regional circulation; Senior research officer of the laboratory of physiology of the cardiorespiratory system and baromedicine
10/3, Petroverigskiy str., Moscow, 101990
76A, Khoroshevskoe highway, Moscow, 123007
D. S. Markov
Russian Federation
Markov Dmitry S. – Doctor of Medical Sciences, Professor
114-g, Oboronnaia str., Tula, 300045
M. V. Malishevsky
Russian Federation
Malichevsky Michail V. – Doctor of Medical Sciences, Professor
114-g, Oboronnaia str., Tula, 300045
O. O. Yudakov
Russian Federation
Yudakov Oleg Yu. – Head of the Department
1, Boldina str., Tula Region, Shchekino, 301247
A. Yu. Gorshkov
Russian Federation
Gorshkov Alexander Yu. – Candidate of Medical Sciences, Head of the laboratory of microcirculation and regional circulation
10/3, Petroverigskiy str., Moscow, 101990
A. V. Baldin
Russian Federation
Baldin Alexandr V. – Doctor of Technical Sciences, Professor of the Department of Information Processing and Control Systems, Faculty of Informatics and Control Systems
2nd Baumanskaya str., Moscow, Russia, 105005
D. M. Zhuk
Russian Federation
Zhuk Dmitry M. – Candidate of Technical Sciences, associate Professor of the Department of Design Automation Systems, Faculty of Robotics and Integrated Automation
2nd Baumanskaya str., Moscow, 105005
A. Yu. Spasenov
Russian Federation
Spasenov Alexey Yu. – Junior researcher Vibrodiagnostics Laboratory
2nd Baumanskaya str., Moscow, Russia, 105005
A. I. Korolev
Russian Federation
Korolev Andrei I. – Junior researcher laboratory of microcirculation and regional circulation
10/3, Petroverigskiy str., Moscow, 101990
A. V. Koptelov
Russian Federation
Koptelov Alexandr V. – Candidate of Medical Sciences, Anesthesiologist-Resuscitator of the City Clinical Hospital № 67 named after L. A. Vorokhobov
Salama Adilya str., 2/44, Moscow, 123423
O. M. Drapkina
Russian Federation
Drapkina Oksana M. – Doctor of Medical Sciences, Professor, Academician of Russian Academy of Science, director
10/3, Petroverigskiy str., Moscow, 101990
References
1. Rybakova MG, Karev VE, Kuznetsova IA. Anatomical pathology of novel coronavirus COVID-19) infection. First impressions // Archive of patology. 2020;82(5):5–15. (In Russ.)]. Doi:10.17116/patol2020820515
2. Chen W, Pan JY. Anatomical and pathological observation and analysis of SARS and COVID-19: microthrombosis is the main cause of death // Biol Proced Online. 2021;23(1):4. Doi: 10.1186/s12575-021-00142-y
3. Chkhaidze IZ, Lioznov DA, Petrishchev NN, Niauri DA. Systemic endotheliitis in terms of novel coronavirus infection COVID-19: gender-related and perinatal risks // Regional blood circulation and microcirculation. 2021;20(4):4–13. (In Russ.)]. Doi: 10.24884/1682-6655-2021-20-4-4-13.
4. Vlasova TI, Petrishchev NN, Vlasov TD. Endothelial dysfunction as the typical pathological state // Regional blood circulation and microcirculation. 2022;21(2):4- 15. (In Russ.)]. Doi: 10.24884/1682-6655-2022-21-2-4-15.
5. Natalello G, DeLuca G, Gigante L, Campochiaro C, De-Lorenzis E, Verardi L. et al. Nailfold capillaroscopy findings in patients with coronavirus disease 2019: Broadening the spectrum of COVID-19 microvascular involvement // Microvascular Research. 2021;(133):104071. Doi: 10.1016/i.mvr.2020.104071
6. Karahan S, Aydin K, Cetinkaya A, Sirakaya A. Nailfold videocapillaroscopy in patients with COVID-19-associated pneumonia in intensive care units // J Coll Physicians Surg Pak. 2022;32(04):455–460. Doi: 10.29271/jcpsp.2022.04.455
7. Ladozhskaya-Gapeenko EE, Khrapov KN, Petrishchev NN, Polushin YuS, Shlyk IV. Microcirculation disorders in patients with severe COVID-19 and development of bacterial sepsis // Regional blood circulation and microcirculation. 2021;20(4):52–61. (In Russ.). Doi: 10.24884/1682-6655-2021-20-4-52-61
8. Invernizzi A, Schiuma M, Parulli S, Torre A, Zicarelli F, Colombo V. et al. Retinal vessels modifications in acute and post-COVID-19 // Scientific Reports. 2021;(11):19373. Doi: 10.1038/s41598-021-98873-1
9. Rovas A, Osiaevi I, Buscher K, Sackarnd J, Tepasse Ph-R, Fobker M. et al. Microvascular dysfunction in COVID-19: the MYSTYC study // Angiogenesis. 2021;(24):145–157. Doi: 10.1007/s10456-020-09753-7
10. Favaron E, Ince C, Hilty M, Ergin B, Van der Zee P, Uz Z. et al. Capillary leukocytes, microaggregates, and the response to hypoxemia in the microcirculation of coronavirus disease 2019 patients // Critical Care Medicine 2021;49(4):661–670. Doi: 10.1097/CCM.0000000000004862.
11. Tehrani S, Gille-Johnson P. Microvascular dysfunction in patients with critical COVID-19, a pilot study. Shock. 2021;56(6):964–968. Doi: 10.1097/SHK. 0000000000001803
12. Sabioni L, De Lorenzo A, Lamas C, Muccillo F, Castro-Faria-Neto HC, Estato V, Tibrica E. Systemic microvascular endothelial dysfunction and disease severity in COVID-19 patients: Evaluation by laser Doppler perfusion monitoring and cytokine/chemokine analysis // Microvascular Research. 2021;(134):104119. Doi: 10.1016/j.mvr.2020.104119.
13. Mejia-Renteria H, Travieso A, Sagir A, Martinez-Gomez E, Carrascosa-Granada A, Toya T. et al. In-vivo evidence of systemic endothelial vascular dysfunction in COVID-19 // Int. J. Cardiology 2021;(345):153–155. Doi: 10.1016/j.ijcard.2021.10.140.
14. Fedorovich AA. Microcirculation of the human skin as an object of research. Regional blood circulation and microcirculation. 2022;21(2):4–15. (In Russ.). Doi: 10.24884/1682-6655-2017-16-4-11-26.
15. Thorn CE, Kyte H, Slaff DW, Shore AC. An association between vasomotion and oxygen extraction // Am J Physiol Heart Circ Physiol. 2011;301(2):H442–449. Doi: 10.1152/ajpheart.01316.2010
Review
For citations:
Fedorovich A.A., Markov D.S., Malishevsky M.V., Yudakov O.O., Gorshkov A.Yu., Baldin A.V., Zhuk D.M., Spasenov A.Yu., Korolev A.I., Koptelov A.V., Drapkina O.M. Microcirculatory disorders in the forearm skin in the acute phase of COVID-19 according to laser Doppler flowmetry. Regional blood circulation and microcirculation. 2022;21(3):56-63. (In Russ.) https://doi.org/10.24884/1682-6655-2022-21-3-56-63