Preview

Regional blood circulation and microcirculation

Advanced search

Antioxidant effect evaluation of drugs with different chemical structures by the degree of mast cell degranulation under photodynamic damage

https://doi.org/10.24884/1682-6655-2022-21-3-82-90

Abstract

Introduction. This model of skin acute inflammation caused by photodynamic damage (PHD), where reactive oxygen species (ROS) play a key role, enables the analysis of the microcirculation (MCC) dysfunction and degranulation of mast cells (MCs) at the site of exposure. The current study explored the IgE-independent mechanisms of MCs activation caused by PHD and the possibility of its pharmacological correction. Aim of the study – to evaluate the possibilities of using the model of acute inflammation induced by ROS during PHD to study the MCs contribution to the regulation of vascular permeability and to study angioprotective and MCC-improving drugs at the preclinical stage. Materials and methods. Male Wistar rats were injected with a photosensitizer, then anesthetized and laser irradiated 3 hours later, followed by one of the following drugs: hydrocortisone (HC), ethylmethylhydroxypyridine succinate (ES), or quinacrine (QC). Skin MCC was investigated by laser Doppler flowmetry. Calculation and morphometry of MCs was carried out on film preparations of loose connective tissue of the skin. Results. Immediately after PHD, the blood flow in the control group was 1.9 [1.4; 2.3] p. u., which is 55 % less than the initial values. Partial restoration of blood flow up to 3.7 [3.3; 4.0] p.u. was observed after one hour of observation (88 % of baseline, p<0.001). Despite the administration of HC and ES, the blood flow after PHD decreased by 8,5 and 32,5 %, respectively. After an hour, it was only 78 % of the baseline. Intravenous administration of QC immediately after irradiation, lead to decrease of the blood flow only 28 %, and after an hour the blood flow was completely restored. The degree of MCs degranulation after the intravenous administration of HC and QC is almost equal and characterized by a decrease in the number of MCs with complete (anaphylactic) degranulation to 27.5 [21.6; 29.4] and 26.4 [22.5; 32.5] %, respectively, versus 46.9 [47.7; 52] % in the control group (p<0,05); however, after the administration of ES, the results are comparable with the intact control. Non-parametric correlation analysis did not reveale statistically significant difference between blood flow one hour after photodynamic exposure and morphometric types of MCs in groups with various drugs. Conclusion. Differences between the drug effects on the skin blood flow and the IgE-independent MCs activation is confirmed by the absence of a correlation between these parameters. QC, in comparison with ES and HC, is more effective in relation to dysfunction of the skin MCC. Under these conditions, the combined use of anti-inflammatory and antioxidant drugs seems promising.

About the Authors

D. L. Sonin
Almazov National Medical Research Centre; Pavlov University
Russian Federation

Sonin Dmitry L. – Cand. of Sci. (Med.), Head of the Department of microcirculation and cardiac metabolism

2, Akkuratova str., Saint Petersburg, 197341
6-8, L’va Tolstogo str., Saint Petersburg, 197022

 



D. R. Fayzullina
Pavlov University
Russian Federation

Faizullina Dinara R. – assistant of the Department of Pathophysiology with a course of Clinical Pathophysiology

6-8, L’va Tolstogo str., Saint Petersburg, 197022



E. A. Zaitseva
Almazov National Medical Research Centre
Russian Federation

Zajtseva Ekaterina A. – Junior Research Fellow of the Department of microcirculation and cardiac metabolism

2, Akkuratova str., Saint Petersburg, 197341



N. N. Petrishchev
Pavlov University
Russian Federation

Petrishchev Nikolay N. – Doctor of Medical Sciences, Professor of the Department pathophysiology with a course of clinical pathophysiology, Head of the Center for Laser Medicine of Scientific and Educational Institute of Biomedicine

6-8, L’va Tolstogo str., Saint Petersburg, 197022



References

1. He Z, Ma C, Yu T, Song J, Leng J, Gu X, Li J. Activation mechanisms and multifaceted effects of mast cells in ischemia reperfusion injury // Exp Cell Res. 2019;376(2):227–235. Doi: 10.1016/j.yexcr.2019.01.022.

2. Zuurbier CJ, Abbate A, Cabrera-Fuentes HA, Cohen MV, Collino M, De Kleijn DPV, Downey JM, Pagliaro P, Preissner KT, Takahashi M, Davidson SM. Innate immunity as a target for acute cardioprotection // Cardiovasc Res. 2019; 115(7):1131–1142. Doi: 10.1093/cvr/cvy304.

3. Andreadou I, Cabrera-Fuentes HA, Devaux Y, Frangogiannis NG, Frantz S, Guzik T, Liehn EA, Gomes CPC, Schulz R, Hausenloy DJ. Immune cells as targets for cardioprotection: new players and novel therapeutic opportunities // Cardiovasc Res. 2019;115(7):1117–1130. Doi: 10.1093/cvr/cvz050.

4. Hausenloy DJ, Chilian W, Crea F, Davidson SM, Ferdinandy P, Garcia-Dorado D, van Royen N, Schulz R, Heusch G. The coronary circulation in acute myocardial ischaemia/reperfusion injury: a target for cardioprotection // Cardiovasc Res. 2019;115(7):1143–1155. Doi: 10.1093/cvr/cvy286.

5. Hara M, Matsumori A, Ono K, Kido H, Hwang MW, Miyamoto T et al. Mast cells cause apoptosis of cardiomyocytes and proliferation of other intramyocardial cells in vitro // Circulation. 1999;(100):1443–1449. Doi: 10.1161/01.CIR.100.13.1443.

6. Zhang QY, Ge JB, Chen JZ, Zhu JH, Zhang LH, Lau CP. et al. Mast cell contributes to cardiomyocyte apoptosis after coronary microembolization // J Histochem Cytochem 2006; (54):515–523. Doi: 10.1369/jhc.5A6804.2005.

7. Amani S, Shahrooz R, Mortaz E, Hobbenaghi R, Mohammadi R, Khoshfetrat AB. Histomorphometric and immunohistochemical evaluation of angiogenesis in ischemia by tissue engineering in rats: Role of mast cells // Vet Res Forum 2019; (10):23–30. Doi: 10.30466/vrf.2019.34311.

8. Ribatti D, Crivellato E. Mast cells, angiogenesis, and tumour growth // Biochim Biophys Acta – Mol Basis Dis. 2012; (1822):2–8. Doi: 10.1016/j.bbadis.2010.11.010.

9. Carmeliet PJR. Molecular mechanisms and clinical applications of angiogenesis // Nature 2011;(473):298–307. Doi: 10.1016/S0140-6736(01)91146-8.

10. Ramírez-Moreno IG, Ibarra-Sánchez A, Castillo-Arellano JI, Blank U, González-Espinosa C. Mast Cells Localize in Hypoxic Zones of Tumors and Secrete CCL-2 under Hypoxia through Activation of L-Type Calcium Channels // J Immunol 2020;(204):1056–1068. Doi: 10.4049/jimmunol.1801430.

11. Maltby S, Khazaie K, McNagny KM. Mast cells in tumor growth: Angiogenesis, tissue remodelling and immune-modulation // Biochim Biophys Acta – Rev Cancer. 2009;(1796):19–26. Doi: 10.1016/j.bbcan.2009.02.001.

12. Kessel D. Apoptosis, paraptosis and autophagy: death and survival pathways associated with photodynamic therapy // Photochem Photobiol. 2019;(95):119–125. Doi: 10.1111/php.12952.

13. Donohoe C, Senge MO, Arnaut LG, Gomes-da-Silva LC. Cell death in photodynamic therapy: from oxidative stress to anti-tumor immunity // Biochim Biophys Acta – Rev Cancer 2019;(1872):188308. Doi: 10.1016/j.bbcan.2019.07.003.

14. Cecic I, Korbelik M. Mediators of peripheral blood neutrophilia induced by photodynamic therapy of solid tumors // Cancer Lett. 2002;(183):43–51. Doi: 10.1016/S0304-3835(02)00092-7.

15. Brooke RCC, Sinha A, Sidhu MK, Watson REB, Church MK, Friedmann PS. et al. Histamine is released following aminolevulinic acid-photodynamic therapy of human skin and mediates an aminolevulinic acid dose-related immediate inflammatory response // J Invest Dermatol. 2006;(126):2296–2301. Doi: 10.1038/sj.jid.5700449.

16. Kerdel FA, Soter NA, Lim HW. In Vivo Mediator Release and Degranulation of Mast Cells in Hematoporphyrin Derivative-Induced Phototoxicity in Mice // J Invest Dermatol. 1987;(88):277–280. Doi: 10.1111/1523-1747.EP12466135.

17. Rosin FCP, Barcessat ARP, Borges GG, Corrêa L. Effect of 5-ALA-mediated photodynamic therapy on mast cell and microvessels densities present in oral premalignant lesions induced in rats // J Photochem Photobiol B Biol. 2015; (153):429–434. Doi: 10.1016/j.jphotobiol.2015.10.027.

18. van Duijnhoven FH, Aalbers RIJM, Rovers JP, Terpstra OT, Kuppen PJK. The immunological consequences of photodynamic treatment of cancer, a literature review // Immunobiology. 2003;(207):105–113. Doi: 10.1078/0171-2985-00221.

19. Voronina TA. Mexidol: the spectrum of pharmacological effects // Zhurnal Nevrologii i Psikhiatrii imeni SS Korsakova. 2012;112(12):86–90. (In Russ.).

20. Shen CY, Wang D, Chang ML, Hsu K. Protective effect of mepacrine on hypoxia-reoxygenation-induced acute lung injury in rats // J Appl Physiol. 1995;78(1):225–231. Doi: 10.1152/jappl.1995.78.1.225. PMID: 7713816.

21. Struhar D, Kivity S, Topilsky M. Quinacrine inhibits oxygen radicals release from human alveolar macrophages // Int J Immunopharmacol. 1992;14(2):275–257. Doi: 10.1016/0192-0561(92)90040-r.

22. Horton JR, Sawada K, Nishibori M, Zhang X, Cheng X. Two polymorphic forms of human histamine methyltransferase: structural, thermal, and kinetic comparisons // Structure. 2001;9(9):837–849. Doi: 10.1016/s0969-2126(01)00643-8.

23. Vallee E, Gougat J, Navarro J, Delahayes JF. Antiinflammatory and platelet anti-aggregant activity of phospholipase-A2 inhibitors // J Pharm Pharmacol. 1979;31(9):588–592. Doi: 10.1111/j.2042-7158.1979.tb13597.x.

24. Oien DB, Pathoulas CL, Ray U, Thirusangu P, Kalogera E, Shridhar V. Repurposing quinacrine for treatmentrefractory cancer // Semin Cancer Biol. 2021;(68):21–30. Doi: 10.1016/J.SEMCANCER.2019.09.021.

25. Wang J, Teng C. Rat paw oedema and mast cell degranulation caused by two phospholipase A2 enzymes isolated from Trimeresurus mucrosquamatus Venom // J Pharm Pharmacol. 1990;(42):846–850. Doi: 10.1111/j.2042-7158.1990.tb07038.x.

26. Vargas F, Díaz Y, Yartsev V, Marcano A, Lappa A. Photophysical properties of novel PDT photosensitizer Radachlorin in different media // Cienc -MARACAIBO. 2004;(12):70–77.

27. Faizullina DR, Sukhorukova EG, Yukina GYu, Petrishchev NN, Korneva EA. Changes in microcirculation and structural components of the skin under photodynamic effects // Regional hemodynamics and microcirculation. 2020;19(1):73–81. (In Russ.). Doi: 10.24884/1682-6655-2020-19-1-73-81.

28. Strauss WSL, Sailer R, Schneckenburger H, Akgün N, Gottfried V, Chetwer L et al. Photodynamic efficacy of naturally occurring porphyrins in endothelial cells in vitro and microvasculature in vivo // J Photochem Photobiol B Biol. 1997;(39):176–184. Doi: 10.1016/S1011-1344(97)00002-X.

29. Sims DE, Miller FN, Donald A, Perricone MA. Ultrastructure of pericytes in early stages of histamine-induced inflammation // J Morphol. 1990;206(3):333–342. Doi: 10.1002/jmor.1052060310.

30. Speyer CL, Steffes CP, Ram JL. Effects of vasoactive mediators on the rat lung pericyte: quantitative analysis of contraction on collagen lattice matrices // Microvasc Res. 1999;57(2):134–143. Doi: 10.1006/mvre.1998.2134.

31. Bertlich M, Ihler F, Weiss BG, Freytag S, Strupp M, Canis M. Cochlear pericytes are capable of reversibly decreasing capillary diameter in vivo after tumor necrosis factor exposure // Otol Neurotol. 2017;38(10):e545–e550. Doi: 10.1097/MAO.0000000000001523.

32. Miller FN, Sims DE, Schuschke DA, Abney DL. Differentiation of light-dye effects in the microcirculation // Microvasc Res. 1992;44(2):166–184. Doi: 10.1016/0026-2862 (92)90078-4.

33. O’Farrell FM, Mastitskaya S, Hammond-Haley M, Freitas F, Wah WR, Attwell D. Capillary pericytes mediate coronary no-reflow after myocardial ischaemia // eLife. 2017; (6):e29280. Doi: 10.7554/eLife.29280.

34. Cavin S, Riedel T, Rosskopfova P, Gonzalez M, Baldini G, Zellweger M, Wagnières G, Dyson PJ, Ris HB, Krueger T, Perentes JY. Vascular-targeted low dose photodynamic therapy stabilizes tumor vessels by modulating pericyte contractility // Lasers Surg Med. 2019;51(6):550–561. Doi: 10.1002/lsm.23069.

35. Tilton RG, Kilo C, Williamson JR, Murch DW. Differences in pericyte contractile function in rat cardiac and skeletal muscle microvasculatures // Microvasc Res. 1979;18(3):336–352. Doi: 10.1016/0026-2862(79)90042-6.

36. Krosl G, Korbelik M, Dougherty GJ. Induction of immune cell infiltration into murine SCCVII tumour by photofrinbased photodynamic therapy // Br J Cancer. 1995;(71):549–555. Doi: 10.1038/bjc.1995.108.

37. Pineda B. Quinacrine, an old drug with potentially usefull in the treatment for COVID-19 // Arch Med Res. 2021; 52(8):858–859. Doi: 10.1016/j.arcmed.2021.06.002.

38. Bauersachs J, Hecker M, Busse R. Display of the characteristics of endothelium-derived hyperpolarizing factor by a cytochrome P450-derived arachidonic acid metabolite in the coronary microcirculation // Br J Pharmacol. 1994; 113(4):1548–1553. Doi: 10.1111/j.1476-5381.1994.tb17172.x.

39. Yasenyavskaya AL, Samotrueva MA, Bashkina OA, Andreeva LA, Myasoedov NF, Tyurenkov IN, Karaulov AV. Neuropeptide regulation of immunity // Immunologiya. 2018;39(5–6):326–336. Doi: 10.18821/0206-4952-2018-39-5-6-326-336.


Review

For citations:


Sonin D.L., Fayzullina D.R., Zaitseva E.A., Petrishchev N.N. Antioxidant effect evaluation of drugs with different chemical structures by the degree of mast cell degranulation under photodynamic damage. Regional blood circulation and microcirculation. 2022;21(3):82-90. (In Russ.) https://doi.org/10.24884/1682-6655-2022-21-3-82-90

Views: 575


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-6655 (Print)
ISSN 2712-9756 (Online)