Preview

Regional blood circulation and microcirculation

Advanced search

Artificial intelligence in radiodiagnosis assessment of circulatory disorders in cases of community-acquired pneumonia before and in the COVID-19 pandemic

https://doi.org/10.24884/1682-6655-2023-22-1-16-23

Abstract

Introduction. The COVID-19 pandemic not only caused a surge of viral pneumonia patients, but also opened up new opportunities in the field of radiology. One of the conditional «pluses» was the quantitative damage assessment of the lung parenchyma and microcirculation in COVID-19 using an artificial intelligence program. Objective. To evaluate the AI capabilities to detect the severity of anatomical and microcirculatory post-inflammatory disorders by CT and SPECT of pneumonic patients data. Materials and Methods. We analyzed prospective and retrospective data obtained by radiological studies of 187 patients with community-acquired pneumonia from 2006 to 2022 in the clinics of the St. Petersburg State Medical University named after acad. I.P. Pavlov. The follow-up period varied from 3 months to 8 years. The mean age of the patients was 34.3±9.2 years (w/m – 107/80). All patients underwent CT scan, a comprehensive functional examination of external respiration (KFIVD), SPECT. Results. The community-acquired pneumonia before the COVID-19 pandemic was generally characterized by signs of exudative bronchiolitis/bronchopneumonia, infectious viral alveolitis and pleuropneumonia. The first two forms in contrast to pleuropneumonia were associated with microcirculation disturbances. Signs of lung damage in COVID-19 had staging pattern based on morphological changes: edema, reticulation (increased severity of edema, cellular infiltration, intraalveolar fibrin), organization=consolidation (cellular infiltration, intraalveolar fibrin, fibroblast proliferation). Residual anatomical changes were accompanied by clinical symptoms (shortness of breath of varying severity, dry cough, weakness, intoxication). Conclusions. Using the artificial intelligence for post-processor CT and SPECT image processing seems to be relevant to assess the postinflammatory anatomical and microcirculatory disorders severity. Experience accumulation in combined AI and radiological study of patients with community-acquired pneumonia is capable to quantify residual anatomical and microcirculatory changes and useful for treatment tactics.

About the Authors

Yu. A. Lyiskova
Pavlov University
Russian Federation

Lyiskova Yulia A. – graduate student of the Department of
Radiology and Radiation Medicine with X-ray and Radiological

6-8, L’va Tolstogo street, Saint Petersburg, 197022



A. A. Speranskaya
Pavlov University
Russian Federation

Speranskaya Aleksandra A. – PhD, Professor of the Department of Radiology and Radiation Medicine with X-ray and Radiological

6-8, L’va Tolstogo street, Saint Petersburg, 197022



V. P. Zolotnitskaya
Pavlov University
Russian Federation

Zolotnitskaya Valentina P. – PhD, Senior Scientific Researcher and Scientific and Clinical Center for Radiation Diagnostics

6-8, L’va Tolstogo street, Saint Petersburg, 197022



N. P. Osipov
Pavlov University
Russian Federation

Osipov Nikolay P. – assistant of the Department of Radiology and Radiation Medicine with X-ray and Radiological Departments

6-8, L’va Tolstogo street, Saint Petersburg, 197022



O. V. Amosova
Pavlov University
Russian Federation

Amosova Olga V. – Resident of the Department of Radiology
and Radiation Medicine

6-8, L’va Tolstogo street, Saint Petersburg, 197022



References

1. Тюрин И.Е. Рентгенодиагностика тяжелой пневмонии и гриппа. Лучевая диагностика и терапия. 2016;1, (7):13–16. [Tyurin I.E. X-RAY radiology of severe pneumonia and flu. Diagnost. Radiol and Radiother. 2016;1:13–16. (In Russ.)]. DOI: 10.22328/2079-5343-2016-1-13–16.

2. Чучалин А.Г. Пневмонии: актуальная проблема XXI века. Тер. арх. 2016;88(3):4–12. [Chuchalin A.G. Pneumonia: an actual problem of the 21st century. Ther. Arch. 2016;88(3):4– 12. (In Russ.)]. DOI: 10.17116/terarkh20168834-12.

3. Herold C., Franquet T. Pulmonary infections. The ESC Textbook of Cardiovascular Medicine. 2018.:409–411. DOI: 10.1093/med/9780198784906.003.0080.

4. Inui S. Radiology: Cardiothoracic Imaging, Available at: https://www.researchgate.net/journal/Radiology-Cardiothoracic-Imaging-2638-6135. Accessed at: 24.02.2022.

5. Han X., Fan Y., Alwalid O. et al. Six-month Follow-up Chest CT Findings after Severe COVID-19 Pneumonia. Radiology. 2021;299(1):E177-186. DOI: 10.1148/radiol.2021203153.

6. Сперанская А.А. Роль искусственного интеллекта в оценке прогрессирующих фиброзирующих болезней легких. Тер. арх., 2022;94(3):409–412. [Speranskaia A.A. The role of artificial intelligence in assessing the progression of fibrosing lung diseases. Ther. Arch. 2022:94(3):409–412. (In Russ.)]. DOI: 10.26442/00403660.2022.03.201407.

7. Золотницкая В.П., Тишков А.В., Агафонов А.О., Страх Л.В., Амосова О.В. Новые возможности обработки результатов радиологического исследования легких. REJR. 2019;9(2):98–106. [Zolotnitskaia V.P., Tishkov A.V., Agaphonov A.O., Strach L.V., Amosova O.V. New possibilities of processing the results of lungs radiological studies. REJR. 2019;9(2):98–106. (In Russ.)]. DOI: 10.21569/2222-7415- 2019-9-2-98-106.

8. Золотницкая В.П. Лучевая диагностика нарушений микроциркуляции в легких у больных с внебольничной пневмонией. Регионарное кровообращение и микроциркуляция. 2020;19(3):31–38. [Zolotnitskaia V.P. Radiation diagnosis of pulmonary microcirculation in patients with communityacquired pneumonia. Region. Hemodynam. Microcirc. 2020; 19(3):31–38. (In Russ.)]. DOI: 10.24884/1682-6655-2020- 19-3-31-38.

9. Nalbandian A. , Sehgal K., Gupta A. et al. Post-acute COVID-19 syndrome. Nature Med. 2021;27:601–661. DOI: 10.1038/s41591-021-01283-z.

10. Martini K., Larici A.R., Revel M.P. еt al. COVID 19 pneumonia imaging follow up: when and how? A proposition from ESTI and ESR. Europ. Radiol. 2022;32:2639–2649. DOI: 10.1007/s00330-021-08317-7.

11. Zu Z.Y., Jiang M.D., Xu P.P. et al. Coronavirus disease 2019 (COVID-19): a perspective from China. Radiology. 2020;296(2):E15–E25. DOI: 10.1148/radiol.2020200490.

12. Сперанская А.А., Осипов Н.П., Лыскова Ю.А., Амосова О.В. КТ-диагностика последствий COVID-19 поражения легких. Лучевая диагностика и терапия. 2021;12(4):58–64. [Speranskaia A.А., Osipov N.P., Lyskova I.A., Amosova O.V. CT patterns of residual changes in COVID-19 lung lesions. Diagnost. Radiol. Radiother. 2021;12 (4):58–64. (In Russ.)]. DOI:10.22328/2079-5343-2021-12-4-58-64.

13. Золотницкая В.П., Амосов В.И., Титова О.Н., Агафонов А.О., Амосова О.В. Нарушения микроциркуляции в легких по данным перфузионной ОФЭКТ у пациентов в постковидном периоде. REJR. 2021;11(2):8–18. [Zolotnitskaya V.P., Amosov V.I., Titova O.N., Agafonov A.O., Amo sova O.V. Disorders of microcirculation in the lungs according to perfusion SPECT data in patients in post COVID-19 condition. REJR. 2021;11(2):8–18. (In Russ.)]. DOI: 10.21569/ 2222-7415-2021-11-2-8-18.

14. Orme J., Romney J.S., Hopkins R.O., Pope D., Chan K.J., Thomsen G., Crapo R.O., Weaver L.K. Pulmonary function and health related quality of life in survivors of acute respiratory distress syndrome. Amer. J. Resp. Crit. Care Med. 2003;167:690–694. DOI: 10.1164/rccm.200206-542OC.

15. Hui D.S., Wong K.T., Ko F.W., Tam L.S., Chan D.P., Woo J., Sung J.J.Y. The 1-Year Impact of Severe Acute Respiratory Syndrome on Pulmonary Function, Exercise Capacity, and Quality of Life in a Cohort of Survivors. Chest. 2005. 128(4): 2247–2261. DOI:10.1378/chest.128.4.2247.

16. Авдеев С.Н., Карчевская Н.А., Баймаканова Г.Е., Черняк А.В. Годичное наблюдение за больными, перенесшими острое повреждение легких/острый респираторный дистресс-синдром, вызванный вирусом гриппа А/Н1N1. Пульмонология. 2011;(4):58–66. [Avdeev S.N., Karchevskaya N.A., Baimakanova G.E., Cherniak A.V. A one year follow up study of patients survived after ALI/ARDS caused by influenza A/H1N1. Pulmonology. 2011;(4):58–66. (In Russ.)].

17. Antonio G.E., Wong K.T., Hui D.S. Thin-section CT in patients with severe acute respiratory syndrome following hospital discharge: preliminary experience. Radiology. 2003;228:810–815. DOI: 10. 1148/ radiol. 22830 30726.

18. Wu X., Dong D., Ma D. Thin-section computed tomography manifestations during convalescence and long-term followup of patients with severe acute respiratory syndrome (SARS). Med. Sci. Monit. 2016; 22:2793–2799. DOI: 10.12659/ msm.896985.


Review

For citations:


Lyiskova Yu.A., Speranskaya A.A., Zolotnitskaya V.P., Osipov N.P., Amosova O.V. Artificial intelligence in radiodiagnosis assessment of circulatory disorders in cases of community-acquired pneumonia before and in the COVID-19 pandemic. Regional blood circulation and microcirculation. 2023;22(1):16-23. (In Russ.) https://doi.org/10.24884/1682-6655-2023-22-1-16-23

Views: 586


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-6655 (Print)
ISSN 2712-9756 (Online)