Comparative evaluation of the parameters of laser doppler flowmetry of the skin of healthy persons using devices of various modifications
https://doi.org/10.24884/1682-6655-2023-22-3-41-50
Abstract
Objective. Evaluation of differences in the values of the recorded perfusion parameters of two structurally different LDF devices in a group of healthy people of working age. Materials and methods. The study included 53 relatively healthy volunteers (m/f – 30/23) of working age (43±9 years). The study of microcirculation was carried out in the supine position on the back surface of the left forearm, simultaneously with two LDF devices: a LAKK-02 device with a fiber-optic data transmission and reception probe and a portable LAZMA-PF analyzer. The study included measurement of basal perfusion, respiratory constrictor test (DP), constrictor test with venous occlusion (VO), and dilator test with arterial occlusion (AO). Results. Relative to the stationary variant, the portable device demonstrates statistically significant differences, namely, higher values of the tissue perfusion level – 4.27 [3.82; 5.54] PU and 3.44 [3.03; 4.11] PU, respectively, as well as the amplitude of respiratory fluctuations in blood flow 0.08 [0.06; 0.13] PU and 0.07 [0.06; 0.09] PU, and lower values of the amplitude of pulse oscillations 0.22 [0.19; 0.26] PU and 0.26 [0.2; 0.31] PU and constrictor activity of microvessels in DP – 21.5% [19.2; 29.4] and 40% [29; 51] and VO – 27% [20; 33] and 47% [42; 56] respectively. The statistical significance of differences in values (p<0.05) was confirmed by One-way ANOVA. For a more complete understanding of the results obtained, a numerical simulation of the propagation of optical radiation of two devices in the skin was carried out. The simulation results showed that the probing volume of the skin and the penetration depth of the radiation in a portable device are greater than in a device with a fiber optic probe. The results obtained suggest the predominance of the venular link of the skin microvasculature in the formation of the reflected signal in the portable version of the LDF device compared to the device with a fiber optic probe. Conclusion. The wavelength and design features of LDF devices affect the results of the study due to the different diagnostic volume of the skin, which is recommended to be taken into account in scientific and clinical work.
About the Authors
M. A. MikhailovaRussian Federation
Mikhailova Maria A. – Researcher, Department of Fundamental and Applied Aspects of Obesity
10/3, Petroverigsky per., Moscow, 101990
A. A. Fedorovich
Russian Federation
Fedorovich Andrey A. – Candidate of Sciences (PhD) in Medicine, Senior Researcher; Senior Research Officer, Laboratory of Autonomic Regulation of Cardiovascular System
10/3, Petroverigsky per., Moscow, 101990;
76A, Khoroshevskoe shosse, Moscow, 123007
A. Yu. Gorshkov
Russian Federation
Gorshkov Alexander Yu. – Candidate of Sciences (PhD) in Medicine, Head, Laboratory of Microcirculation and Regional Circulation
10/3, Petroverigsky per., Moscow, 101990
A. I. Korolev
Russian Federation
Korolev Andrey I. – Junior Researcher, Laboratory of Microcirculation and Regional Circulation
10/3, Petroverigsky per., Moscow, 101990
V. A. Dadaeva
Russian Federation
Dadaeva Valida A. – Candidate of Sciences (PhD) in Medicine, Researcher, Department of Fundamental and Applied Aspects of Obesity
10/3, Petroverigsky per., Moscow, 101990
E. V. Zharkikh
Russian Federation
Zharkikh Elena V. – Research Assistant
95, Komsomolskaya str., Orel, 302026
Yu. I. Loktionova
Russian Federation
Loktionova Yulia I. – Research Assistant
95, Komsomolskaya str., Orel, 302026
A. V. Dunaev
Russian Federation
Dunaev Andrey V. – Doctor of Technical Sciences, Associate Professor, Leading Researcher
95, Komsomolskaya str., Orel, 302026
V. V. Sidorov
Russian Federation
Sidorov Victor V. – Candidate of Sciences (PhD) in Technology
8, Tvardovskogo str., Moscow, 123458
O. M. Drapkina
Russian Federation
Drapkina Oksana M. – Doctor of Medical Sciences, Professor; Director
10/3, Petroverigsky per., Moscow, 101990
References
1. Chernovickaja JuV. Tsifrovyye tekhnologii v meditsine: spetsifika otvetstvennosti pri ikh ispol′zovanii // Nauchnyy rezul′tat. Sotsial′nyye i gumanitarnyye issledovaniya. 2020;6(4):89–101. (In Russ.). Doi: 10.18413/2408-932X-2020-6-4-0-10.
2. Dunaev AV. Multimodal′naya opticheskaya diagnostika mikrotsirkulyatorno-tkanevykh sistem organizma cheloveka: Monografiya. Staryj Oskol, TNT, 2022:440. (In Russ.).
3. Cygankova EA, Korneva JuS. Primeneniye spektroskopicheskikh metodov v issledovaniyakh novoobrazovaniy v biologicheskikh tkanyakh // Vestnik Smolenskoj gosudarstvennoj medicinskoj akademii. 2020;(2):150–156. (In Russ.). Doi: 10.37903/vsgma. 2021.2.21.
4. Potapova EV, Mikhailova MA, Koroleva AK, Stavtsev DD, Dremin VV, Dunaev AV, Yakushkina NYu, Krupatkin AI, Margaryants NB. A Multiparametric Approach to the Assessment of Cutaneous Microcirculation in Dermatological Patients (on the Example of Patients with Psoriasis) // Human Physiology. 2021;47(6):619–627. (In Russ.). Doi: 10.31857/S013116462105009X.
5. Filina MA, Potapova EV, Makovik IN, Zharkih EV, Dremin VV, Zherebtsov EA, Dunaev AV, Sidorov VV, Krupatkin AI, Alimicheva EA, Masalygina GI, Muradyan VF. Functional Changes in Blood Microcirculation in the Skin of the Foot during Heating Tests in Patients with Diabetes Mellitus // Human Physiol. 2017;43(6),693–699. (In Russ.). Doi: 10.1134/ s0362119717060020.
6. Potapova EV, Filina MA, Kozlov IO, Zharkih EV, Drjomin VV, Malaja NS, Snimshhikova IA, Dunaev AV, Sidorov VV, Krupatkin AI. Osobennosti lokal′noy mikrotsirkulyatsii krovi u patsiyentov s psoriazom // Regional blood circulation and microcirculation. 2018;17(3):58–64. (In Russ.). Doi: 10.24884/1682-6655- 2018-17-3-58-64.
7. Loktionova YuI, Zharkikh EV, Mikhailova MA, Korolev AI, Dadaeva VA, Gorshkov AYu, Kim OT, Dunaev AV, Fedorovich AA, Zherebtsov EA. Detection of masked hypertension based on laser Doppler flowmeter measurements // Proc. SPIE. 2021;12192:121920V1. Doi: 10.1117/12.2626390.
8. Fedorovich AA, Loktionova YI, Zharkikh EV, Gorshkov AYu, Korolev AI, Dadaeva VA, Drapkina OM, Zherebtsov EA. Skin microcirculation in middle-aged men with newly diagnosed arterial hypertension according to remote laser Doppler flowmetry data // Microvasc Res. 2022;144:104419. Doi: 10.1016/j.mvr.2022.104419.
9. Loktionova YI, Zharkikh EV, Kozlov IO, Zherebtsov EA, Bryanskaya SA, Zherebtsova AI, Sidorov VV, Sokolovski SG, Dunaev AV, Rafailov EU. Pilot studies of age-related changes in blood perfusion in two different types of skin // Proc. SPIE. 2019;11065:110650S. Doi: 10.1117/12.2522968.
10. Loktionova YI, Zharkikh EV, Fedorovich AA, Mikhailova MA, Popova JA, Suvorov AV, Drapkina OM, Zherebtsov EA. Influence of the body position on skin blood microcirculation measured by wearable laser Doppler sensors // European Conference on Biomedical Optics (ECBO). Online only, 2021: ETu2A.31. Doi: 10.1117/12.2615015.
11. Loktionova JuI, Zharkih EV, Zherebcova AI, Kozlov IO, Zherebcov EA, Masalygina GI, Dunaev AV. Issledovaniye vozrastnykh i patologicheskikh osobennostey parametrov mikrogemodinamiki v norme i pri sakharnom diabete 2 tipa s pomoshch′yu nosimykh lazernykh dopplerovskikh floumetrov // Fundamental′nyye i prikladnyye problemy tekhniki i tekhnologii. 2019;6(338):131–137. (In Russ.).
12. Zharkikh EV, Loktionova, JuL, Zherebtsova AI, Tsyganova M, Zherebtsov EA, Tiselko A. Skin blood perfusion and fluorescence parameters in pregnant women with type 1 diabetes mellitus // 2021 International Conference on Electrical Engineering and Photonics (EExPolytech). St. Petersburg, IEEE, 2021:238–240. Doi: 10.1109/eexpolytech53083. 2021.9614885.
13. Zherebtsov EA, Zharkikh EV, Kozlov IO, Loktionova YI, Zherebtsova AI, Rafailov IE, Sokolovski SG, Sidorov VV, Dunaev AV, Rafailov EU. Wearable sensor system for multipoint measurements of blood perfusion: pilot studies in patients with diabetes mellitus // Proc. SPIE. 2019;11075:110791O. Doi: 10.1117/12.2526966.
14. Fedorovich AA, Markov DS, Malishevskij MV, Judakov OI, Gorshkov AJu, Baldin AV, Zhuk DM, Spasenov AJu, Korolev AI, Koptelov AV, Drapkina OM. Narusheniya mikrotsirkulyatornogo krovotoka v kozhe predplech′ya v ostruyu fazu COVID-19 po dannym lazernoy dopplerovskoy floumetrii // Regional blood circulation and microcirculation. 2022;20(3):56–63. (In Russ.). Doi: 10.24884/1682-6655- 2022-21-3-56-63.
15. Zharkikh EV, Loktionova YuI, Fedorovich AA, Gorshkov AY, Dunaev AV. Assessment of Blood Microcirculation Changes after COVID-19 Using Wearable Laser Doppler Flowmetry // Diagnostics (Basel). 2023;13(5):920. Doi: 10. 3390/ diagnostics13050920.
16. Dunaev AV, Zherebtsov EA, Rogatkin DA, Stewart NA, Sokolovski SG, Rafailov EU. Substantiation of medical and technical requirements for noninvasive spectrophotometric diagnostic devices // J Biomed Optics. 2013;18(10):107009. Doi: 10.1117/1.jbo.18.10.107009.
17. Dremin V, Zherebtsov E, Bykov A, Popov A, Doronin A, Meglinski I. Influence of blood pulsation on diagnostic volume in pulse oximetry and photoplethysmography measurements // Appl Opt. 2019;58(34):9398–9405. Doi: 10.1364/AO.58. 009398.
18. Rogatkin DA, Dunaev AV, Lapaeva LG. Metrological Support of Methods and Devices for Noninvasive Medical Spectrophotometry // Biomed Engineering. 2010;44(2):66–70. (In Russ.). Doi: 10.1007/s10527-010- 9157-x.
19. Dremin VV. Analiticheskiy obzor podkhodov k matematicheskomu modelirovaniyu fluorestsentsii biologicheskikh tkaney // Fundamental′nyye i prikladnyye problemy tekhniki i tekhnologii. 2016;6(320):92–102. (In Russ.).
20. Zharkih EV. Modelirovaniye diagnosticheskogo ob′′yema dlya portativnogo ustroystva lazernoy dopplerovskoy floumetrii // Fundamental′nyye i prikladnyye problemy tekhniki i tekhnologii. 2023;(1(357)):140–148. (In Russ.).
21. Doronin AV, Meglinski IV. Online Object Oriented Monte Carlo computational tool for the needs of biomedical optics // Biomed Opt Express. 2011;2(9):2461–2469. Doi: 10. 1364/boe.2.002461.
22. Dremin V, Zherebtsov E, Bykov A, Popov A, Doronin A, Meglinski I. Influence of blood pulsation on diagnostic volume in pulse oximetry and photoplethysmography measurements // Applied Optics. 2019;58(34):9398–9405. Doi: 10.1364/ao.58.009398.
23. Petrov GI, Doronin A, Whelan HT, Meglinski I, Yakovlev VV. Human tissue color as viewed in high dynamic range optical spectral transmission measurements // Biomed Opt Express. 2012;3(9):2154–2161. Doi: 10.1364/boe.3.002154.
24. Roggan A, Dorschel K, Minet O, Wolff D, Muller G. The optical properties of biological tissue in the near infrared wavelength range // Laser-Induced Interstitial Ther. 1995: 10–44. 2
25. Ding H, Lu JQ, Wooden WA, Kragel PJ, Hu X-H. Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm // Phys Med Biol. 2006;51(6):1479–1489. Doi: 10.1088/0031- 9155/51/6/008.
26. Duck FA. Physical properties of tissues: a comprehensive reference book // Med Phys. 1991;18(4):834. Doi: 10.1118/1.596734.
27. Salomatina E, Jiang B, Novak, Yaroslavsky AN. Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range // J Biomed Opt. 2006; 11(6):064026. Doi: 10.1117/1.2398928.
28. Mizeva IA, Potapova EV, Dremin VV, Zherebtsov EA, Mezentsev MA, Shuleptsov VV, Dunaev AV. Optical probe pressure effects on cutaneous blood flow // Clin. hemorheol Microcirc. 2019;72(3):259–267. Doi: 10.3233/ch-180459.
Review
For citations:
Mikhailova M.A., Fedorovich A.A., Gorshkov A.Yu., Korolev A.I., Dadaeva V.A., Zharkikh E.V., Loktionova Yu.I., Dunaev A.V., Sidorov V.V., Drapkina O.M. Comparative evaluation of the parameters of laser doppler flowmetry of the skin of healthy persons using devices of various modifications. Regional blood circulation and microcirculation. 2023;22(3):41-50. (In Russ.) https://doi.org/10.24884/1682-6655-2023-22-3-41-50