Experimental evaluation of parameters of capillary blood flow, hemorheology and hemostasis on a model of acute respiratory distress syndrome in rats
https://doi.org/10.24884/1682-6655-2023-22-3-86-95
Abstract
The aim is to evaluate the diagnostic and prognostic capabilities of capillary blood flow parameters on an experimental model of acute respiratory distress syndrome (ARDS) with subsequent analysis of hemorheological and hemostasiological parameters as the main factors affecting the effectiveness of microvascular perfusion. Materials and methods. The work was performed on 30 Wistar male rats. The ARDS model of mild severity was reproduced by intratracheal administration of Salmonella enterica lipopolysaccharide at a dose of 20.0 mg/kg. Lipopolysaccharide at a dose of 30.0 mg/kg was used to reproduce severe ARDS. On day 2 after exposure, the rats underwent computer capillaroscopy of the periarticular rollers after which venous blood samples were taken from the animals to determine the level of C-reactive protein and to study hemorheological parameters and parameters of coagulation hemostasis. In order to assess the severity of edema, the mass coefficient of the lungs was calculated. Results. At ARDS, capillaroscopy of the periarticular rollers in rats revealed a decrease in blood flow rate by 34.67 % (p<0.05) in the arterial part of the capillaries, a tendency to spasm of arterioles and expansion of venules, as well as the presence of intravascular aggregates. In addition, all experimental animals showed an increase in blood shear yield stress, and an increase in the content of fibrinogen, soluble fibrin-monomer complexes and C-reactive protein (p<0.05). No significant changes in capillary blood flow indices were observed in ARDS of varying severity. However, the parameters of blood shear yield stress, antithrombin activity and hematocrit had a sufficient level of prognostic ability (AUC>0.8; p<0.05). Conclusion. Indicators of capillary blood flow in combination with hemorheological and hemostasiological parameters can be used in conducting preclinical studies of the effectiveness of drugs aimed at correcting systemic dysfunction of microcirculation including experimental ARDS.
About the Authors
V. A. PugachRussian Federation
Pugach Victoria A. – Candidate of Sciences (PhD) in Biology, Senior Researcher
4, Lesoparkovaya str., Saint Petersburg, 195043
6-8, L’va Tolstogo str., Saint Petersburg,197022
S. G. Chefu
Russian Federation
Chefu Svetlana G. – Candidate of Sciences (PhD) in Biology, Head, Laboratory for Experimental Research, Center for Laser Medicine, Scientific and Educational Institute of Biomedicine
6-8, L’va Tolstogo str., Saint Petersburg, 197022
М. A. Tyunin
Russian Federation
Tyunin Michael A. – Candidate of Sciences (PhD) in Medicine, Deputy Head, Center
4, Lesoparkovaya str., Saint Petersburg, 195043
E. I. Strokina
Russian Federation
Strokina Elena I. – Researcher, State Scientific Research Testing Institute of Military Medicine
4, Lesoparkovaya str., Saint Petersburg, 195043
D. R. Faizullina
Russian Federation
Faizullina Dinara R. – Assistant of the Department of Pathophysiology with a course of clinical pathophysiology
6-8, L’va Tolstogo str., Saint Petersburg, 197022
N. N. Petrishchev
Russian Federation
Petrishchev Nikolai N. – Dr. Med. Sci., Professor, Head,Center for Laser Medicine, Scientific and Educational Institute of Biomedicine; Professor, Department of Pathophysiology
6-8, L’va Tolstogo str., Saint Petersburg, 197022
References
1. Yaroshetskii AI, Gritsan AI, Avdeev SN et al. Diagnostics and intensive therapy of Acute Respiratory Distress Syndrome // Russ J Anaesthesiol Reanimatol. 2020;2:5–39. (In Russ.). Doi: 10.17116/anaesthesiology20200215.
2. Huppert LA, Matthay MA, Ware LB. Pathogenesis of Acute Respiratory Distress Syndrome // Semin Respir Crit Care Med. 2019;40(1):31–39. Doi: 10.1055/s-0039-1683996.
3. Livingstone SA, Wildi KS, Dalton HJ, Usman A, Ki KK, Passmore MR, Li Bassi G, Suen JY, Fraser JF. Coagulation Dysfunction in acute respiratory distress syndrome and its potential impact in inflammatory subphenotypes // Front Med. 2021;8:723217. Doi: 10.3389/fmed.2021.723217.
4. Tasaka S. Acute Respiratory Distress Syndrome. Advances in Diagnostic Tools and Disease Management. Springer, 2022:182. Doi: 10.1007/978-981-16-8371-8.
5. Deepak J, Puttaswamy R, Puttaswamy H. Non-respiratory functions of the lung // Continuing Education in Anaesthesia Critical Care & Pain. 2013;13(3):98–102.
6. Park BD, Faubel S. Acute Kidney Injury and Acute Respiratory Distress Syndrome // Crit Care Clin. 2021;37(4):835– 849. Doi: 10.1016/j.ccc.2021.05.007.
7. Redko O, Dovgalyuk A, Dovbush A, Nebesna Z, Yakubyshyna L, Krynytska I. Liver injury associated with acute respiratory distress syndrome and the prospects of mesenchymal stem cells therapy for liver failure // Cell Organ Transpl. 2021;9(2):136–142. Doi: 10.22494/cot.v9i2.130.
8. Jayasimhan D, Foster S, Chang, CL, Hancox RJ. Cardiac biomarkers in acute respiratory distress syndrome: a systematic review and meta-analysis // J Intensive Care. 2021; 9(36): Doi: 10.1186/s40560-021-00548-6.
9. Cui N, Jiang C, Chen H, Zhang L, Feng X. Prevalence, risk, and outcome of deep vein thrombosis in acute respiratory distress syndrome // Thromb J. 2021;19(1):71. Doi: 10.1186/ s12959-021-00325-3.
10. Di Dedda U, Ascari A, Fantinato A, Fina D, Baryshnikova E, Ranucci M. Microcirculatory Alterations in Critically Ill Patients with COVID-19-Associated Acute Respiratory Distress Syndrome // J Clin Med. 2022;11(4):1032. Doi: 10.3390/jcm11041032.
11. Turgel VA, Tultseva SN. Relationship of the main indicators of systemic COVID-associated endotheliopathy with the morphofunctional state and hemodynamics of the retina and chorioid in the acute period of the disease // Ophthalmol Reports. 2022;15(3):7–17. (In Russ.). Doi: 10.17816/ OV110727.
12. Ladozhskaya-Gapeenko ЕЕ, Khrapov КN, Polushin YuS, Shlyk IV, Vartanova IV, Fionik АМ, Danilova DM. Evaluation of microcirculation disorders in patients with severe COVID-19 by nail bed capillaroscopy // Messenger of ANESTHESIOLOGY AND RESUSCITATION. 2021;18(1):27–36. (In Russ.). Doi: 10.21292/2078-5658-2021-18-1-27-36.
13. LadozhskayaGapeenko EE, Khrapov KN, Petrishchev NN, Polushin YuS, Shlyk IV. Microcirculation disorders in patients with severe COVID-19 and development of bacterial sepsis // Regional blood circulation and microcirculation. 2021;20(4):52–61. (In Russ.). Doi: 10.24884/1682-6655-2021-20-4-52-61.
14. LadozhskayaGapeenko EE, Khrapov KN, Polushin YuS, Shlyk IV, Petrishchev NN, Vartanova IV. Microcirculation Disorders in Patients with Severe COVID-19 // Messenger Anesthesiol Resuscitation. 2021;18(4):7–19. (In Russ.). Doi: 10.21292/2078-5658- 2021-18-4-7-19.
15. Fabrikantov OL, Pronichkina MM. Capillaroscopy parameters of the nailfold microcirculation (review) // Siberian Scient Med J. 2018;38(2):62–67. (In Russ.). Doi: 10.15372/SSMJ20180210.
16. Çakmak F, Demirbuga A, Demirkol D, Gümüş S, Torun SH, Kayaalp GK, Ömeroglu RE, Somer A, Uysalol M, Yıldız R, Ayaz NA. Nailfold capillaroscopy: A sensitive method for evaluating microvascular involvement in children with SARS-CoV-2 infection // Microvasc Res. 2021;138:104196. Doi: 10.1016/j.mvr.2021.104196.
17. Pugach VA, Tyunin MA, Ilinskiy NS, Levchuk EV, Strokina EI, Eltsov AA. An Experimental Model of Direct Acute Lung Injury in Rats Caused by Intratracheal Administration of Lipopolysaccharide from Salmonella enterica // J Biomed. 2021;17(3):84–89. (In Russ.). Doi: 10.33647/2074-5982-17-3-84-89.
18. Voloshin NI, Pugach VA, Tyunin MA, Strokina EI, Hizha VV, Nikolaev AV, Salukhov VV. Clinical, biochemical and pathomorphological features of direct acute lung injury in rats caused by intratracheal administration of Salmonella enterica lipopolysaccharide // Laboratory Animals for Science. 2022;3:16–23. (In Russ.). Doi: 10.57034/2618723X-2022-03-02.
19. Apostolidis AJ, Beris AN. Modeling of the blood rheology in steady-state shear flows // J Rheol. 2014;58(3):607–633.
20. Chandran K, Rittgers S, Yoganathan A. Biofluid Mechanics. 2nd ed. Boca Raton, CRC Press, 2012:432.
21. Andreeva EA. S-reaktivnyy belok v otsenke patsiyentov s respiratornymi simptomami do i v period pandemii COVID-19 // RMZH. 2021;29(6):14–17. (In Russ.).
22. Waksman O, Choi D, Mar P, Chen Q, Cho D, Kim H, Smith R, Goonewardena S, Rosensen R. Association of blood viscosity and device-free days among hospitalized patients with COVID-19 // J Intensive Care. 2023;11(1):17. Doi: 10.1186/ s40560-023-00665-4.
23. Camprubí-Rimblas M, Tantinyà N, Bringué J, Guillamat-Prats R, Artigas A. Anticoagulant therapy in acute respiratory distress syndrome // Ann Transl Med. 2018;6(2):36. Doi: 10.21037/atm.2018.01.08.
24. Millar FR, Summers C, Griffiths MJ, Toshner MR, Proudfoot AG. The pulmonary endothelium in acute respiratory distress syndrome: insights and therapeutic opportunities // Thorax. 2016;71(5):462–473. Doi: 10.1136/thoraxjnl2015-207461.
Review
For citations:
Pugach V.A., Chefu S.G., Tyunin М.A., Strokina E.I., Faizullina D.R., Petrishchev N.N. Experimental evaluation of parameters of capillary blood flow, hemorheology and hemostasis on a model of acute respiratory distress syndrome in rats. Regional blood circulation and microcirculation. 2023;22(3):86-95. (In Russ.) https://doi.org/10.24884/1682-6655-2023-22-3-86-95