Preview

Регионарное кровообращение и микроциркуляция

Расширенный поиск

Высокое потребление соли, сердечно-сосудистая система и почки у спонтанно гипертензивных крыс

https://doi.org/10.24884/1682-6655-2017-16-3-62-69

Аннотация

Цель исследования - изучение влияния рационов питания с высоким или нормальным содержанием поваренной соли на уровень артериального давления (АД), частоту сердечных сокращений (ЧСС), процессы ремоделирования миокарда и уровень экспрессии нуклеарного фактора транскрипции кВ (NFkB) в миокарде и почках спонтанно гипертензивных крыс (SHR). Материал и методы. Исследованы крысы SHR, получавшие 2 месяца рацион с нормальным (0,34 %; n=24) или высоким содержанием NaCl (8,0 %; n=25). Оценивали величину АД и ЧСС. Рассчитывали индексы массы миокарда левого желудочка (ИММЛЖ), левой и правой почек (ИМЛП, ИМПП соответственно), проводили морфологическое светооптическое исследование миокарда, включая количественную морфометрию. У части лабораторных животных в ткани сердца и левой почки исследовали относительный уровень экспрессии гена нуклеарного фактора транскрипции кВ. Результаты исследования. У крыс SHR, получавших рацион с 8 %-м содержанием NaCl - уровень АД и ЧСС существенно не изменялся по сравнению с контролем, однако возрастали ИММЛЖ, ИМЛП, ИМПП. В миокарде крыс данной группы развивались изменения, выражающиеся в гипертрофии и, возможно, гиперплазии кардиомиоцитов, отмечались значительный периваскулярный фиброз, увеличение толщины стенки артерий, вакуолизация гладкомышечных клеток. Уровень экспрессии гена нуклеарного фактора транскрипции кВ в ткани миокарда животных, получавших корм с высоким содержанием NaCl, оказался в 33 раза, а в ткани почек - в 12 раз выше, чем у крыс, получавших рацион с нормальным содержанием соли. Выводы. Высокое содержание соли в рационе необязательно сопровождается ростом АД, но вызывает ремоделирование миокарда, по-видимому, за счет прямого негемодинамического, «токсического» воздействия. Негативное воздействие на сердечно-сосудистую систему высокосолевых рационов частично реализуется через NFkB-ассоциированные сигнальные пути. Кроме того, диета с высоким содержанием NaCl вызывает активацию NFkB в почках.

Об авторах

Анатолий Григорьевич Кучер
Первый Санкт-Петербургский государственный медицинский университет им. акад. И. П. Павлова
Россия


Ольга Николаевна Береснева
Первый Санкт-Петербургский государственный медицинский университет им. акад. И. П. Павлова
Россия


Марина Магрезовна Парастаева
Первый Санкт-Петербургский государственный медицинский университет им. акад. И. П. Павлова
Россия


Галина Тажимовна Иванова
Институт физиологии им. И. П. Павлова РАН
Россия


Михаил Игоревич Зарайский
Первый Санкт-Петербургский государственный медицинский университет им. акад. И. П. Павлова
Россия


Нина Викторовна Швед
Первый Санкт-Петербургский государственный медицинский университет им. акад. И. П. Павлова
Россия


Иван Глебович Каюков
Первый Санкт-Петербургский государственный медицинский университет им. акад. И. П. Павлова
Россия


Список литературы

1. Береснева О. Н., Парастаева М. М., Иванова Г. Т. и др. Изменения сердечно-сосудистой системы у крыс, сопряженные с высоким потреблением хлорида натрия // Артериальная гипертензия. 2014. Т. 20. № 1. С. 64-70.

2. Каюков И. Г., Береснева О. Н., Парастаева М. М. и др. Влияние возраста и сокращения массы действующих нефронов на состояние миокарда и коронарного русла у молодых крыс // Регионарное кровообращение и микроциркуляция. 2015. Т. 14. № 4. С. 66-73.

3. Alani H., Tamimi A., Tamimi N. Cardiovascular comorbidity in chronic kidney disease: Current knowledge and future research needs // World. J. Nephrol. 2014. Vol. 3. № 4. P. 156-168.

4. Baber U., Gutierrez O. M., Levitan E. M. et al. Risk for recurrent coronary heart disease and all-cause mortality among individuals with chronic kidney disease compared with diabetes mellitus, metabolic syndrome, and cigarette smokers // Am. Heart J. 2013. Vol. 166. P. 373-380.

5. Brown I. J., Dyer A. R., Chan Q. et al. Estimating 24- hour urinary sodium excretion from casual urinary sodium concentrations in Western populations: the INTERSALT study // Am. J. Epidemiol. 2013. Vol. 177. № 11. P. 1180-1192.

6. Cavka A., Jukic I., Ali M. et al. Short-term high salt intake reduces brachial artery and microvascular function in the absence of changes in blood pressure // J. Hypertens. 2016. Vol. 34. № 4. P 676-684. DOI: 10.1097/HJH.0000000000000852.

7. Choi H. Y., Park H. C., Ha S. K. Salt sensitivity and hypertension: a paradigm shift from kidney malfunction to vascular endothelial dysfunction // Electrolyte Blood Press. 2015. Vol. 13. № 1. P. 7-16.

8. Drenjancevic-Peric I., Jelakovic B., Lombard J. H. et al. High-salt diet and hypertension: focus on the renin-angiotensin system // Kidney Blood Press. Res. 2011. Vol. 34. № 1. P. 1-11.

9. Drueke T. B. Salt and health: time to revisit the recommendations // Kidney Int. 2016. Vol. 89. № 2. P. 259-260.

10. Foley R. N., Murray A. M., Li S. et al. Chronic kidney disease and the risk for cardiovascular disease, renal replacement, and death in the United States Medicare population: 1998 to 1999 // J. Am. Soc. Nephrol. 2005. Vol. 16. P. 489-495.

11. Frohlich E. D. Relationship between dietary sodium intake, hemodynamics, and cardiac mass in SHR and WKY rats / E. D. Frohlich, Y. Chien, S. Sesoko, B. L. Pegram // Am. J. Physiol. 1993. Vol. 264. № 1. Pt. 2. P. R30-R34.

12. Fujii K., Ohmori S., Onaka U. et al. Effects of saltloading on membrane potentials in mesenteric arteries of spontaneously hypertensive rats // Hypertens. Res. 1999. Vol. 22. № 3. P. 181-186.

13. Hayakawa Y., Aoyama T., Yokoyama C. et al. High salt intake damages the heart through activation of cardiac (pro) renin receptors even at an early stage of hypertension // PLoS One. 2015. Vol. 23. № 10 (3). Р. e0120453. doi: 10.1371/journal.pone.0120453.

14. Kanbay M. Mechanisms and consequences of salt sensitivity and dietary salt intake / M. Kanbay, Y. Chen, P. Solak, P. W. Sanders // Curr. Opin. Nephrol. Hypertens. 2011. Vol. 20. № 1. P. 37-43.

15. Khan U. A. Prevention of chronic kidney disease and subsequent effect on mortality: a systematic review and metaanalysis / U. A. Khan, A. X Garg, C. R. Parikh, S. G. Coca // PLoS One. 2013. Vol. 8. № 8. P. e71784.

16. Kittikulsuth W., Looney S. W., Pollock D. M. Endothelin ET(B) receptors contribute to sex differences in blood pressure elevation in angiotensin II hypertensive rats on a high-salt diet // Clin. Exp. Pharmacol. Physiol. 2013. Vol. 40. № 6. P. 362-370.

17. Mancia G., Fagard R., Narkiewicz K. et al. 2013 ESH/ ESC guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC) // Eur. Heart J. 2013. Vol. 34. № 28. P. 2159-2219.

18. Mohan S., Campbell N.R. Salt and high bloodpressure // Clin. Sci. (Lond). 2009. Vol. 117. № 1. P. 1-11.

19. Pase M. P., Grima N. A., Sarris J. The effects of dietary and nutrient interventions on arterial stiffness: a systematic review // Am. J. Clin. Nutr. 2011. Vol. 93. № 2. P. 446-454.

20. Rapp J. P. Dahl salt-susceptible and salt-resistant rats. A review // Hypertension. 1982. Vol. 4. № 6. P. 753-763.

21. Ritz E., Mehls O. Salt restriction in kidney disease - a missed therapeutic opportunity? // Pediatr. Nephrol. 2009. Vol. 24. № 1. P. 9-17.

22. Takeda Y., Frohlich E., Chien Y. et al. Relationship between dietary sodium intake, hemodynamics, and cardiac mass in SHR and WKY rats // Am. J. Physiol. 1993. Vol. 264. № 1 (Pt 2). P. R30-R34.

23. Takeda Y., Yoneda T., Demura M. et al. Sodium-induced cardiac aldosterone synthesis causes cardiac hypertrophy // Endocrinology. 2000. Vol. 141. № 5. P. 1901-1904.

24. Tian N., Gu J. W., Jordan S. et al. Immune suppression prevents renal damage and dysfunction and reduces arterial pressure in salt-sensitive hypertension // Am. J. Physiol. Heart. Circ. Physiol. 2007. Vol. 92. № 2. P. H1018-H1025.

25. Titze J., Bauer K., Schafflhuber M. et al. Internal sodium balance in DOCA-salt rats: A body composition study // Am. J. Physiol. Renal. Physiol. 2005. Vol. 289. P. F793-F802.

26. Titze J., Shakibaei M., Schafflhuber M. et al. Glycosa minoglycan polymerization may enable osmotically inactive Na+ storage in the skin // Am. J. Physiol. Heart Circ. Physiol. 2004. Vol. 287. P. H203-H208.

27. Varagic J., Frohlich E. D., Diez J. et al. Myocardial fibrosis, impaired coronary hemodynamics, and biventricular dysfunction in salt-loaded SHR // Am. J. Physiol. Heart Circ. Physiol. 2006. Vol. 290. № 4. P. H1503-H1509.

28. Yu H. C., Burrell L. M., Black M. J. et al. Salt induces myocardial and renal fibrosis in normotensive and hypertensive rats // Circulation. 1998. Vol. 98. № 23. P. 2621-2628.


Рецензия

Для цитирования:


Кучер А.Г., Береснева О.Н., Парастаева М.М., Иванова Г.Т., Зарайский М.И., Швед Н.В., Каюков И.Г. Высокое потребление соли, сердечно-сосудистая система и почки у спонтанно гипертензивных крыс. Регионарное кровообращение и микроциркуляция. 2017;16(3):62-69. https://doi.org/10.24884/1682-6655-2017-16-3-62-69

For citation:


Kucher A.G., Beresneva O.N., Parastaeva M.M., Ivanova G.T., Zarajsky M.I., Shwed N.V., Kayukov I.G. High salts intake, cardiovascular system and kidney in spontaneous hypertensive rats. Regional blood circulation and microcirculation. 2017;16(3):62-69. (In Russ.) https://doi.org/10.24884/1682-6655-2017-16-3-62-69

Просмотров: 1061


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1682-6655 (Print)
ISSN 2712-9756 (Online)