Preview

Regional blood circulation and microcirculation

Advanced search

High salts intake, cardiovascular system and kidney in spontaneous hypertensive rats

https://doi.org/10.24884/1682-6655-2017-16-3-62-69

Abstract

Objective. To study the influence of diet containing high or normal NaCl on the arterial blood pressure level (BP), heart rate (HR), processes of myocardial remodeling and of nuclear transcription factor kB (NFkB) expression in myocardium and kidney in spontaneously hypertensive rats (SHR). Design and methods. The two groups of male SHRs received a diet with normal (0.34 %; n = 24, control) and high content of NaCl (8.0 %; n = 25; experimental group) for 2 months. Blood pressure (BP), heart rate (HR), cardiac left ventricular mass index (LVMI), left (LKMI) and right (RKMI) kidney mass indexes were determined. Morphological study of myocardium (light microscopy), including quantitative morphometry was carried out. In part of animals the relative level of NFkB gene expression in heart and kidney tissues was studied. Results and discussion. In rats fed a diet containing 8 % NaCl BP and HR did not change significantly compared with the control. However, LVMI, RKMI, LKMI were significantly higher in high-salt diet-treated animals than in controls. The heart of high-salt diet-treated animals developed the changes leading to hypertrophy and possibly hyperplasia of cardiomyocytes. In these animals, perivascular fibrosis, significant increase of arterial wall thickness and vacuolization of smooth muscle cells were revealed. The relative level of NFKB gene expression in rats receiving high-salt diet was 33-fold higher in myocardium and 12-fold higher in kidneys than in animals fed a normal salt diet. Conclusion. The high-salt diet is not necessarily accompanied by an increase in blood pressure, but causes myocardial remodeling, apparently due to direct «toxic» effects. The negative impact on the cardiovascular system of high-salt diet is in part mediated through NFkB-associated signaling pathways. Furthermore, high NaCl diet causes activation of NFkB in the kidneys.

About the Authors

A. G. Kucher
First St-Petersburg State Medical University named after I. P. Pavlov
Russian Federation


O. N. Beresneva
First St-Petersburg State Medical University named after I. P. Pavlov
Russian Federation


M. M. Parastaeva
First St-Petersburg State Medical University named after I. P. Pavlov
Russian Federation


G. T. Ivanova
Institute of Physiology named after I. P. Pavlov Russian Academy of Sciences
Russian Federation


M. I. Zarajsky
First St-Petersburg State Medical University named after I. P. Pavlov
Russian Federation


N. V. Shwed
First St-Petersburg State Medical University named after I. P. Pavlov
Russian Federation


I. G. Kayukov
First St-Petersburg State Medical University named after I. P. Pavlov
Russian Federation


References

1. Береснева О. Н., Парастаева М. М., Иванова Г. Т. и др. Изменения сердечно-сосудистой системы у крыс, сопряженные с высоким потреблением хлорида натрия // Артериальная гипертензия. 2014. Т. 20. № 1. С. 64-70.

2. Каюков И. Г., Береснева О. Н., Парастаева М. М. и др. Влияние возраста и сокращения массы действующих нефронов на состояние миокарда и коронарного русла у молодых крыс // Регионарное кровообращение и микроциркуляция. 2015. Т. 14. № 4. С. 66-73.

3. Alani H., Tamimi A., Tamimi N. Cardiovascular comorbidity in chronic kidney disease: Current knowledge and future research needs // World. J. Nephrol. 2014. Vol. 3. № 4. P. 156-168.

4. Baber U., Gutierrez O. M., Levitan E. M. et al. Risk for recurrent coronary heart disease and all-cause mortality among individuals with chronic kidney disease compared with diabetes mellitus, metabolic syndrome, and cigarette smokers // Am. Heart J. 2013. Vol. 166. P. 373-380.

5. Brown I. J., Dyer A. R., Chan Q. et al. Estimating 24- hour urinary sodium excretion from casual urinary sodium concentrations in Western populations: the INTERSALT study // Am. J. Epidemiol. 2013. Vol. 177. № 11. P. 1180-1192.

6. Cavka A., Jukic I., Ali M. et al. Short-term high salt intake reduces brachial artery and microvascular function in the absence of changes in blood pressure // J. Hypertens. 2016. Vol. 34. № 4. P 676-684. DOI: 10.1097/HJH.0000000000000852.

7. Choi H. Y., Park H. C., Ha S. K. Salt sensitivity and hypertension: a paradigm shift from kidney malfunction to vascular endothelial dysfunction // Electrolyte Blood Press. 2015. Vol. 13. № 1. P. 7-16.

8. Drenjancevic-Peric I., Jelakovic B., Lombard J. H. et al. High-salt diet and hypertension: focus on the renin-angiotensin system // Kidney Blood Press. Res. 2011. Vol. 34. № 1. P. 1-11.

9. Drueke T. B. Salt and health: time to revisit the recommendations // Kidney Int. 2016. Vol. 89. № 2. P. 259-260.

10. Foley R. N., Murray A. M., Li S. et al. Chronic kidney disease and the risk for cardiovascular disease, renal replacement, and death in the United States Medicare population: 1998 to 1999 // J. Am. Soc. Nephrol. 2005. Vol. 16. P. 489-495.

11. Frohlich E. D. Relationship between dietary sodium intake, hemodynamics, and cardiac mass in SHR and WKY rats / E. D. Frohlich, Y. Chien, S. Sesoko, B. L. Pegram // Am. J. Physiol. 1993. Vol. 264. № 1. Pt. 2. P. R30-R34.

12. Fujii K., Ohmori S., Onaka U. et al. Effects of saltloading on membrane potentials in mesenteric arteries of spontaneously hypertensive rats // Hypertens. Res. 1999. Vol. 22. № 3. P. 181-186.

13. Hayakawa Y., Aoyama T., Yokoyama C. et al. High salt intake damages the heart through activation of cardiac (pro) renin receptors even at an early stage of hypertension // PLoS One. 2015. Vol. 23. № 10 (3). Р. e0120453. doi: 10.1371/journal.pone.0120453.

14. Kanbay M. Mechanisms and consequences of salt sensitivity and dietary salt intake / M. Kanbay, Y. Chen, P. Solak, P. W. Sanders // Curr. Opin. Nephrol. Hypertens. 2011. Vol. 20. № 1. P. 37-43.

15. Khan U. A. Prevention of chronic kidney disease and subsequent effect on mortality: a systematic review and metaanalysis / U. A. Khan, A. X Garg, C. R. Parikh, S. G. Coca // PLoS One. 2013. Vol. 8. № 8. P. e71784.

16. Kittikulsuth W., Looney S. W., Pollock D. M. Endothelin ET(B) receptors contribute to sex differences in blood pressure elevation in angiotensin II hypertensive rats on a high-salt diet // Clin. Exp. Pharmacol. Physiol. 2013. Vol. 40. № 6. P. 362-370.

17. Mancia G., Fagard R., Narkiewicz K. et al. 2013 ESH/ ESC guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC) // Eur. Heart J. 2013. Vol. 34. № 28. P. 2159-2219.

18. Mohan S., Campbell N.R. Salt and high bloodpressure // Clin. Sci. (Lond). 2009. Vol. 117. № 1. P. 1-11.

19. Pase M. P., Grima N. A., Sarris J. The effects of dietary and nutrient interventions on arterial stiffness: a systematic review // Am. J. Clin. Nutr. 2011. Vol. 93. № 2. P. 446-454.

20. Rapp J. P. Dahl salt-susceptible and salt-resistant rats. A review // Hypertension. 1982. Vol. 4. № 6. P. 753-763.

21. Ritz E., Mehls O. Salt restriction in kidney disease - a missed therapeutic opportunity? // Pediatr. Nephrol. 2009. Vol. 24. № 1. P. 9-17.

22. Takeda Y., Frohlich E., Chien Y. et al. Relationship between dietary sodium intake, hemodynamics, and cardiac mass in SHR and WKY rats // Am. J. Physiol. 1993. Vol. 264. № 1 (Pt 2). P. R30-R34.

23. Takeda Y., Yoneda T., Demura M. et al. Sodium-induced cardiac aldosterone synthesis causes cardiac hypertrophy // Endocrinology. 2000. Vol. 141. № 5. P. 1901-1904.

24. Tian N., Gu J. W., Jordan S. et al. Immune suppression prevents renal damage and dysfunction and reduces arterial pressure in salt-sensitive hypertension // Am. J. Physiol. Heart. Circ. Physiol. 2007. Vol. 92. № 2. P. H1018-H1025.

25. Titze J., Bauer K., Schafflhuber M. et al. Internal sodium balance in DOCA-salt rats: A body composition study // Am. J. Physiol. Renal. Physiol. 2005. Vol. 289. P. F793-F802.

26. Titze J., Shakibaei M., Schafflhuber M. et al. Glycosa minoglycan polymerization may enable osmotically inactive Na+ storage in the skin // Am. J. Physiol. Heart Circ. Physiol. 2004. Vol. 287. P. H203-H208.

27. Varagic J., Frohlich E. D., Diez J. et al. Myocardial fibrosis, impaired coronary hemodynamics, and biventricular dysfunction in salt-loaded SHR // Am. J. Physiol. Heart Circ. Physiol. 2006. Vol. 290. № 4. P. H1503-H1509.

28. Yu H. C., Burrell L. M., Black M. J. et al. Salt induces myocardial and renal fibrosis in normotensive and hypertensive rats // Circulation. 1998. Vol. 98. № 23. P. 2621-2628.


Review

For citations:


Kucher A.G., Beresneva O.N., Parastaeva M.M., Ivanova G.T., Zarajsky M.I., Shwed N.V., Kayukov I.G. High salts intake, cardiovascular system and kidney in spontaneous hypertensive rats. Regional blood circulation and microcirculation. 2017;16(3):62-69. (In Russ.) https://doi.org/10.24884/1682-6655-2017-16-3-62-69

Views: 1058


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-6655 (Print)
ISSN 2712-9756 (Online)