Preview

Регионарное кровообращение и микроциркуляция

Расширенный поиск

Микрососудистое русло кожи человека как объект исследования

https://doi.org/10.24884/1682-6655-2017-16-4-11-26

Полный текст:

Аннотация

Возможности современных неинвазивных методов исследования микроциркуляции у человека позволяют погрузиться в мир фундаментальных физиологических процессов на противоположном сердцу «полюсе» сердечно-сосудистой системы и получать данные, которые раньше для исследователей были недоступны. Например, лазерная допплеровская флоуметрия и компьютерная капилляроскопия позволяют получать информацию о вазомоторной активности резистивных прекапиллярных артериол и капиллярных сфинктеров, которые регулируют приток крови к обменному звену сосудистого русла, определять количество функционирующих капилляров и эффективность фильтрационно-реабсорбционного механизма обмена веществ. Данный механизм обеспечивает обмен водорастворимых и низкомолекулярных веществ и определяется параметрами гемодинамики. В обзоре кратко анализируются основные структурные и функциональные аспекты микрососудистого русла кожи, которые необходимо учитывать при проведении неинвазивных исследований системы микроциркуляции у человека.

Об авторе

А. А. Федорович
Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр профилактической медицины» Министерства здравоохранения Российской Федерации; Федеральное государственное бюджетное учреждение науки «Государственный научный центр Российской Федерации, Институт медико-биологических проблем РАН»
Россия


Список литературы

1. Банин В. В. Влияние интерстициальных факторов на параметры, определяющие транспорт жидкости через стенку кровеносных микрососудов брыжейки кошки // Физиологический журнал СССР. - 1986. - Т. 72. - № 9. - С. 1213-1222.

2. Гайтон А. К., Холл Д. Э. В кн.: Медицинская физиология. - М., 2008. - С. 196-211.

3. Григорьева Т. А. Иннервация кровеносных сосудов. - М.: Медицина, 1954. - 376 c.

4. Гурфинкель Ю. И., Макеева О. В., Острожинский В. А. Особенности микроциркуляции, эндотелиальной функции и скорости распространения пульсовой волны у пациентов с начальными стадиями артериальной гипертензии // Функциональная диагностика. - 2010. - № 2. - С. 18-25.

5. Кошев В. И., Петров Е. С., Иванова В. Д., Волобуев А. Н. Модульная и локальная осморегуляция капиллярного кровотока специализированными эндотелиальными клетками. - Самара: Офорт, 2004. - 188 c.

6. Крупаткин А. И. Клиническая нейроангиофизиология конечностей (периваскулярная иннервация и нервная трофика). - М.: Научный мир, 2003. - 328 c.

7. Крупаткин А. И. Новые возможности оценки иннервации микрососудов кожи с помощью спектрального анализа колебаний микрогемодинамики // Регионарное кровообращение и микроциркуляция. - 2004. - Т. 3. - № 4. - С. 52-59.

8. Крупаткин А. И., Сидоров В. В. Лазерная допплеровская флоуметрия микроциркуляции крови. -М.: Медицина, 2005. - 256 c.

9. Крупаткин А. И., Сидоров В. В., Федорович А. А. и др. Колебательный контур регуляции числа функционирующих капилляров //Регионарное кровообращение и микроциркуляция. - 2006. - Т. 5. - № 3. - С. 54-58.

10. Крупаткин А. И., Сидоров В. В. Функциональная диагностика состояния микроциркуляторно-тканевых систем. Колебания, информация, нелинейность. -М.: Либриком, 2013. - 496 c.

11. Крупаткин А. И. Колебания кровотока - новый диагностический язык в исследовании микроциркуляции // Регионарное кровообращение и микроциркуляция. - 2014. - Т. 13. - № 1 (49). - С. 83-99.

12. Ноздрачев А. Д. Химическая структура периферического автономного (висцерального) рефлекса // Успехи физиологических наук. - 1996. - Т. 27. - № 2. - С. 28-60.

13. Поленов С. А., Дворецкий Д. П., Чернявская Г. В. Вазомоторные эффекты нейропептидов // Физиологический журнал им. И. М. Сеченова. - 1995. - № 6 (81). - С. 29-47.

14. Ткаченко Б. И. Венозное кровообращение. - Л.: Медицина, 1979. - 224 с.

15. Чернух А. М., Александров П. Н., Алексеев О. В. Микроциркуляция. - М.: Медицина, 1984. - 456 c.

16. Швалев В. Н. Возрастные изменения регуляторных механизмов сердечно-сосудистой системы и значение синтетазы оксида азота в норме и при патологии // Кардиология. - 2007. - Т. 47. - № 5. - С. 67-72.

17. Arck P. C., Slominski A., Theoharides T. C. et al. Neuroimmunology of stress: skin takes center stage. J. Investig. Dermatol. 2006; 126: 1697-1704. doi: 10.1038/sj.jid.5700104.

18. Arildsson M., Asker C. L., Salerud E. G., Stromberg T. Skin capillary appearance and skin microvascular perfusion due to topical application of analgesia cream. Microvasc. Res. 2000; 59: 14-23. doi: 10.1006/mvre.1999.2206.

19. Basler A. Uber die bestimmung der stromungsgeschwindigkeit in den blutkapilallen der menschlichen haut. Muench. Med. Wocheschr. 1919; 13: 347-348.

20. Boegehold M. A. Shear-dependent release of venular nitric oxide: effect on arteriolar tone in rat striated muscle. Am. J. Physiol. (Heart Circ. Physiol.) 1996; 271: H387-H1395.

21. Bollinger A., Butti P., Barras J. P. et al. Red blood cell velocity in nailfold capillaries of man measured by a television microscopy technique. Microvasc. Res. 1974; 7(1): 61-72. doi: https://doi.org/10.1016/0026-2862(74)90037-5.

22. Braverman I. M. The cutaneous microcirculation: ultrastructure and microanatomical organization. Microcirc. 1997; 4(3): 329-340.

23. Burton A. C. Role of geometry size and shape in the microcirculation. Fed. Proc. 1966; 25: 1753-1760.

24. Butti P., Intaglietta M., Reimann H. et al. Capillary red blood cell velocity measurements in human nailfold by videodensitometric method. Microvasc. Res. 1975; 10(2): 1-8. doi: https://doi.org/10.1016/0026-2862(75)90010-2.

25. Caro C. G., Pedley T. J., Schroter R. C., Seed W. A. The mechanics of the circulation. Second Edition. Cambridge University Press; 2012. 524 p.

26. Chambers R., Zweifach B. W. Functional activity of blood capillary bed, with special reference to visceral tissue. Ann. NY Acad. Sci. 1944; 46: 683-694.

27. DeGraff J. C., Ubbink D. T., Lagard S. M., Jacobs M. J. The feasibility and reliability of capillary blood pressure measurements in the fingernail fold. Microvasc. Res. 2002; 63(3): 270-278. doi: 10.1006/mvre.2001.2388.

28. Donadio V., Nolano M., Provitera V. et al. Skin sympathetic adrenergic innervation: An immunofluorescence confocalstudy. Ann. Neurol. 2006; 59: 376-381. doi: 10.1002/ ana.20769.

29. Drummond P. D. The effect of sympathetic blockade on facial sweating and cutaneous vascular responses to painful stimulation of the eye. Brain. 1993; 116: 233-241.

30. Duling B. R., Berne R. M. Propagated vasodilation in the microcirculation of the hamster cheek pouch. Circ. Res. 1970; 26: 163-170. doi: https://doi.org/10.1161/01.RES.26.2.163.

31. Eichna L. W. Capillary blood pressure in man. Direct measurements in the digits during arterial hypertension inducedbyparedrinolsulfate. J. Clin. Invest. 1942; 21(6): 711-729. doi: 10.1172/JCI101348.

32. Eichna L. W., Bordeley J. Capillary bloodpressure in man. Comparison of direct and indirect methods of measurement. J. Clin. Invest. 1939; 18(6): 695-704. doi: 10.U72/JCU01085.

33. Fagrell B., Fronek A., Intaglietta M. A microscope television system for studying flow velocity in human skin capillaries. Am. J. Physiol. 1977; 233: 318-321.

34. Falcone J. C., Bohlen H. G. EDRF from rat intestine and skeletal muscle venules causes dilation of arterioles. Am. J. Physiol. (Heart Circ. Physiol.) 1990; 258: H1515-H1523.

35. Fedorovich A. A. Non-invasive evaluation of vasomotor and metabolic functions of microvascular endothelium in human skin. Microvasc. Res. 2012; 84: 86-93. doi: 10.1016/j.mvr.2012.03.011.

36. Fegan P. G., Tooke J. E., Googing K. M. et al. Capillary pressure in subjects with type 2 diabetes and hypertension and the effect of antihypertensive therapy. Hypertens. 2003; 41(5): 1111-1117. doi: https://doi.org/10.H61/01.HYP.0000068200.09187.1E.

37. Fraser P. A., Smaje L. H., Verrinder A. Microvascular pressures and filtration on coefficients in the cat mesentery. J. Physiol. (London). 1978; 283: 439-456. doi: 10.1113/jphysiol.1978.sp012511.

38. Fung Y. C. Microscopic blood vessels in the mesentery in Biomechanics a proceeding. New York, ASME; 1966. p. 151-166.

39. Fung Y. C. Theoretical considerations of the elasticity of red cells and small blood vessels. Fed. Proc. 1966; 25: 1761-1772.

40. Gore R. W. Fluid exchange across single capillaries in rat intestinal muscle. Am. J. Physiol. 1982; 242: 268-287.

41. Hahn M., Hahn C., Brauer K., Junger M. Skin thermoregulation during local cooling in healthy volunteers and patients with systemic sclerosis - synchronous assessment of capillary red blood cell velocity, laser Doppler flux and skin temperature. Vasa. 1998; 27(1): 3-9.

42. Hahn M., Heubach T., Steins A., Junger M. Hemodynamics in nailfold capillaries of patients with systemic scleroderma: synchronous measurements ofcapillary blood pressure and red blood cell velocity. J. Invest. Dermatol. 1998; 110(6): 982-985. doi: 10.1046/j.1523-1747.1998.00190.x.

43. Hahn M., Junger M., Shore A. C. The effect of prostaglandin E1 on nailfold capillary blood pressure and red blood cell velocity in humans. Clin. Hemorheol. Micocirc. 2004; 31(3): 227-234.

44. Hahn M., Klyscz T., Junger M. Synchronous measurements of capillary blood pressure and red blood cell velocity in capillaries of human skin. J. Invest. Dermatol. 1996; 106(6): 1256-1259.

45. Hahn M., Shore A. C. The effect of rapid local cooling on human finger nailfold capillary blood pressure and blood cell velocity. J. Physiol. 1994; 478(1): 109-114. doi: 10.1113/jphysiol.1994.sp020234.

46. Hammer L. W., Ligon A. L., Hester R. L. ATP-mediated release of arachidonic acid metabolites from venular endothelium causes arteriolar dilation. Am. J. Physiol. (Heart Circ. Physiol.) 2001; 280: H2616-H2622.

47. Hester R. L. Venular-arteriolar diffusion of adenosine in hamster cremaster microcirculation. Am. J. Physiol. (Heart Circ. Physiol.) 1990; 258: H1918-H1924.

48. Holovatz L. A., Thompson-Torgerson C. S., Kenney W. L. The human cutaneous circulation as model of generalized microvascular function. J. Appl. Physiol. 2008; 105: 370-372. doi: 10.1152/japplphysiol.00858.2007.

49. Intaglietta M. Pressure Permeability relations in capillaries of the rabbit omentum. Bidl. Anat. (Basel). 1969; 10: 238-240.

50. Izumi H. Nervous control of blood flow in orofacial region. Pharmacol. Ther. 1999; 81: 141-161. doi: https://doi.org/10.1016/S0163-7258(98)00040-0.

51. Jacobs M., Slaaf D., Lemmens J., Reneman R. The use of hemorheological and microcirculatory parameters in evaluating the affect of treatment in Raynaud’s phenomenon. Vasc. Surg. 1987; 21: 9-15.

52. James M. A., Tullett J., Hemsley A. G., Shore A. C. Effects of aging and hypertension on the microcirculation. Hypertens. 2006; 47(5): 968-974. doi: https://doi.org/10.1161/01.HYP.0000209939.05482.61.

53. Kastrup J., Bulow J., Lassen N. A. Vasomotion in human skin before and after local heating recorder with laser Doppler flowmetry. Int. J. Microcirc. 1989; 8: 205-215.

54. Kvandal P., Landsverk S. A., Bernjak A. et al. Low-frequency oscillations of the laser Doppler perfusion signal in human skin. Microvasc. Res. 2006; 72(3): 120-127. doi: 10. 1016/j.mvr.2006.05.006.

55. Kvandal P., Stefanovska A., Veber M. et al. Regulation of human cutaneous circulation evaluated by laser Doppler flowmetry, iontophoresis, and spectral analysis: importance of nitric oxide and prostaglandins. Microvasc. Res. 2003; 65: 160-171. doi: https://doi.org/10.1016/S0026-2862(03)00006-2.

56. Landis E. M. Capillary pressure and capillary permeability. Physiol. Rev. 1934; 14: 404-481.

57. Landis E. M. Micro-injection studies of capillary blood pressure in human skin. Heart. 1930; 15: 209-228.

58. Lewick J. R., Michel C. C. The effects of position and skin temperature on the capillary pressures in the fingers and toes. J. Physiol. 1978; 274: 97-109. doi: 10.1113/jphysiol.1978.sp012136.

59. Lossius K., Eriksen M., Walloe L. Fluctuations in blood flow to acral skin in humans: connection with heart rate and blood pressure variability. J. Physiol. 1993; 460: 641-655. doi: 10.1113/jphysiol.1993.sp019491.

60. Mahler F., Muheim M. H., Intaglietta M. Continuous measurement of pressure in human nailfold capillaries. Bibl. Anat. 1977; 16(2): 109-111.

61. Mahler F., Muheim M. H., Intaglietta M. et al. Blood pressure fluctuations in human nailfold capillaries. Am. J. Physiol. 1979; 236(6): H888-H893.

62. Mahler F., Nagel G., Saner H., Kneubuhl F. In vivo comparison of the nailfold capillary diameters as determined by using the erythrocyte column and FITC-labelled albumin. Int. J. Microcirc.: Clin. Exp. 1983; 2: 147-183.

63. Mahler F., Sanner H., Annaheim M., Linder H. R. Capillaroscopic evaluation of erythrocyte flow velocity in patients with Raynaud’s syndrome by means of a local cold exposure test. Prog. Appl. Microcirc. 1986; 11: 47-59.

64. Mahy I. R., Shore A. C., Smith L. D., Tooke J. E. Disturbance of peripheral microvascular function in congestive heartfailure secondary to idiopathic dilated cardiomyopathy. Cardiovasc. Res. 1995; 30(6): 939-944.

65. Mahy I. R., Shore A. C., Smith L. D., Tooke J. E. The peripheral microcirculation in atrial fibrillation: preservation of capillary pressure andfiltration coefficient. Cardiovasc. Res. 1994; 28(10): 1555-1558.

66. Mahy I. R., Tooke J. E., Shore A. C. Capillary pressure during and after incremental venous pressure elevation in man. J. Physiol. 1995; 485(1): 213-219. doi: 10.1113/jphysiol.1995.sp020725.

67. McKay M. K., Gardner A. L., Boyd D., Hester R. Influence of venular prostaglandin release on arteriolar diameter during functional hyperemia. Hypertension. 1998; 31(2): 213-217. doi: https://doi.org/10.1161/01.HYP.31A.213.

68. Meyer M. F., Rose C. J., Hulsmann J. O. et al. Impaired 0.1-Hz vasomotion assessed by laser Doppler anemometry as an early index of peripheral sympathetic neuropathy in diabetes. Microvasc. Res. 2003; 65(2): 88-95. doi: https://doi.org/10.1016/S0026-2862(02)00015-8.

69. Morris S. J., Kunzek S., Shore A. C. The effect of acetylcholine on finger capillary pressure and capillary flow in healthy volunteers. J. Physiol. 1996; 494(1): 307-313. doi: 10.1113/jphysiol.1996.sp021493.

70. Muck-Weymann M. E., Tritt K., Hornstein O. P. et al. Rhythmical changes of the cutaneous blood flow in the forehead region under the condition of hypnoid relaxation. Vasa. 1998; 27(4): 220-223.

71. Nellore K., Harris N. R. Nitric oxide measurements in rat mesentery reveal disrupted venulo-arteriolar communication in diabetes. Microcirc. 2004; 11: 415-423. doi: 10.1080/10739680490457809.

72. Ostergren J., Fagrell B., Svedman P. The influence of venous and arterial occlusion on skin capillary bloodflow on transcutaneous oxygen tension in fingers. Int. J. Microcirc.: Clin. Exp. 1983; 2: 315-324.

73. Popoff N. W. The digital vascular system - With reference to the state Glomus in inflammation Arteriosclerotic gangrene, diabetic gangrene trombo-angiitis obliterans and supernumerary digits in man. Arch. Pathol. 1934; 18: 295-330.

74. Richardson D. Relationship between digital artery and nailfold capillary flow velocities in human skin. Microcirc. 1982; 2: 283-296.

75. Saito Y., Eraslan A., Hester R. L. Importance of venular flow in control of arteriolar diameter in hamster cremaster muscle. Am. J. Physiol. (Heart Circ. Physiol.) 1993; 265: H1294-H1300.

76. Schmid-Schonbein H., Zied S., Rutten W., Heidtmann H. Active and passive modulation of cutaneous red cell flux as measured by Laser Doppler anemometry. Vasa 1992; 34: 38-47.

77. Segal S. S. Integration and modulation of intercellular signaling underlying blood flow control. J. Vasc. Res. 2015; 52(2): 136-157. doi: 10.1159/000439112.

78. Segal S. S., Damon D. N., Duling B. R. Propagation of vasomotor responses coordinates arteriolar resistances. Am. J. Physiol. (Heart Circ. Physiol.) 1989; 256: H832-H837.

79. Segal S. S., Duling B. R. Flow control among microvessels coordinated by intercellular conduction. Sciene. 1986; 234: 868-870. doi: 10.1126/science.3775368.

80. Shore A. C., Jaap A. J., Tooke J. E. Capillary pressure in patients with NIDDM. Diabetes. 1994; 43(10): 1198-1202. doi: https://doi.org/10.2337/diab.43.10.1198.

81. Shore A. C., Sandeman D. D., Tooke J. E. Capillary pressure, pulse pressure amplitude, and pressure waveform in healthy volunteers. Am. J. Physiol. 1995; 268(1): H147-H154.

82. Shore A. C., Sandeman D. D., Tooke J. E. Effect of an increase in systemic bloodpressure on nailfold capillary pressure in humans. Am. J. Physiol. 1993; 265(3): H820-H823.

83. Taylor N. A., Machado-Moreira C. A., van den Heuvel A. M., Caldwell J. N. Hands and feet: physiological insulators, radiators and evaporators. Eur. J. Appl. Physiol. 2014; 114: 2037-2060. doi: 10.1007/s00421-014-2940-8.

84. Thoresen M., Walloe L. Skin blood flow in humans as a function of environmental temperature measured by ultrasound. Acta Physiol. Scand. 1980; 109: 333-341. doi: 10.1111/j.1748-1716.1980.tb06604.x.

85. Thorn C. E., Kyte H., Slaff D. W., Shore A. C. An association between vasomotion and oxygen extraction. Am. J. Physiol. Heart Circ. Physiol. 2011; 301: H442-H449. doi: 10.1152/ajpheart.01316.2010.

86. Tigno X. T., Ley K., Pries A. R., Haehtgens P. Venulo-arteriolar communication andpropagated response. A possible mechanism for local control of bloodflow. Pflugers Arch (Eur. J. Physiol). 1989; 414: 450-456.

87. Tikhonova I. V., Tankanag A. V., Chemeris N. K. Time-amplitude analysis of skin blood flow oscillations during the post-occlusive reactive hyperemia in human. Microvasc. Res. 2010; 80: 58-64. doi: 10.1016/j.mvr.2010.03.010.

88. Tooke J. E. A capillary pressure disturbance on young diabetics. Diabetes. 1980; 29(10): 815-819. doi: https://doi.org/10.2337/diacare.20.10.815.

89. Tooke J. E., Ostergren J., Fagrell B. Synchronous assessment of human skin microcirculation by laser Doppler flowmetry and dynamic capillaroscopy. Int. J. Microcirc.: Clin. Exp. 1983; 2(4): 277-284.

90. Tooke J. E., Tindall H., McNicol G. P. The influence of a combined oral contraceptive pill and menstrual cycle phase on digital microvascular haemodynamics. Clin. Sci. (Lond). 1991; 61(1): 91-95. doi: 10.1042/cs0610091.

91. Williams S. A., Wasserman S., Rawlinson D. W. et al. Dynamic measurement of human capillary blood pressure. Clin. Sci. (Lond.). 1988; 74(5): 507-512. doi: 10.1042/cs0740507.

92. Yu-Ying-Cheng, Tyml K. Capillary adrenoreceptors in rat skeletal muscle. Microvasc. Res. 1997; 53(3): 235-244. doi: https://doi.org/10.1006/nvre.1997.2009.

93. Zweifach B. W. Quantitative studies ofmicrocirculatory structure and function. II. Direct measurement of capillary pressure in splanchnic mesenteric vessels. Circ. Res. 1974; 34: 858-866. doi: https://doi.org/10.1161/01.RES.34.6.858.

94. Zweifach B. W., Intaglietta M. Mechanics of fluid movement across single capillaries in the rabbit. Microvasc. Res. 1968; 1(1): 83-101. doi: https://doi.org/10.1016/0026-2862(68)90008-3.


Для цитирования:


Федорович А.А. Микрососудистое русло кожи человека как объект исследования. Регионарное кровообращение и микроциркуляция. 2017;16(4):11-26. https://doi.org/10.24884/1682-6655-2017-16-4-11-26

For citation:


Fedorovich A.A. Microcirculation of the human skin as an object of research. Regional blood circulation and microcirculation. 2017;16(4):11-26. (In Russ.) https://doi.org/10.24884/1682-6655-2017-16-4-11-26

Просмотров: 130


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1682-6655 (Print)