Preview

Regional blood circulation and microcirculation

Advanced search

Microcirculation of the human skin as an object of research

https://doi.org/10.24884/1682-6655-2017-16-4-11-26

Abstract

The possibilities of modern non-invasive methods of studying microcirculation in humans allow you to immerse yourself in the world of fundamental physiological processes on the opposite heart to the «pole» of the cardiovascular system and to obtain data that were previously inaccessible to researchers. For example, laser Doppler flowmetry and computer capillaroscopy make it possible to obtain information on the vasomotor activity of resistive precapillary arterial and capillary sphincters that regulate the flow of blood to the exchange unit. This mechanism ensures the exchange of water-soluble and low-molecular substances and is determined by parameters of hemodynamics. The review briefly analyzes the main structural and functional aspects of the microvascular bed of the skin, which must be taken into account when conducting non-invasive studies of the microcirculation system in humans.

About the Author

A. A. Fedorovich
National Medical Research Center for Preventive Medicine of the Ministry of Healthcare of the Russian Federation; State Scientific Center of Russia Institute of Biomedical Problems of the Russian Academy of Sciences
Russian Federation


References

1. Банин В. В. Влияние интерстициальных факторов на параметры, определяющие транспорт жидкости через стенку кровеносных микрососудов брыжейки кошки // Физиологический журнал СССР. - 1986. - Т. 72. - № 9. - С. 1213-1222.

2. Гайтон А. К., Холл Д. Э. В кн.: Медицинская физиология. - М., 2008. - С. 196-211.

3. Григорьева Т. А. Иннервация кровеносных сосудов. - М.: Медицина, 1954. - 376 c.

4. Гурфинкель Ю. И., Макеева О. В., Острожинский В. А. Особенности микроциркуляции, эндотелиальной функции и скорости распространения пульсовой волны у пациентов с начальными стадиями артериальной гипертензии // Функциональная диагностика. - 2010. - № 2. - С. 18-25.

5. Кошев В. И., Петров Е. С., Иванова В. Д., Волобуев А. Н. Модульная и локальная осморегуляция капиллярного кровотока специализированными эндотелиальными клетками. - Самара: Офорт, 2004. - 188 c.

6. Крупаткин А. И. Клиническая нейроангиофизиология конечностей (периваскулярная иннервация и нервная трофика). - М.: Научный мир, 2003. - 328 c.

7. Крупаткин А. И. Новые возможности оценки иннервации микрососудов кожи с помощью спектрального анализа колебаний микрогемодинамики // Регионарное кровообращение и микроциркуляция. - 2004. - Т. 3. - № 4. - С. 52-59.

8. Крупаткин А. И., Сидоров В. В. Лазерная допплеровская флоуметрия микроциркуляции крови. -М.: Медицина, 2005. - 256 c.

9. Крупаткин А. И., Сидоров В. В., Федорович А. А. и др. Колебательный контур регуляции числа функционирующих капилляров //Регионарное кровообращение и микроциркуляция. - 2006. - Т. 5. - № 3. - С. 54-58.

10. Крупаткин А. И., Сидоров В. В. Функциональная диагностика состояния микроциркуляторно-тканевых систем. Колебания, информация, нелинейность. -М.: Либриком, 2013. - 496 c.

11. Крупаткин А. И. Колебания кровотока - новый диагностический язык в исследовании микроциркуляции // Регионарное кровообращение и микроциркуляция. - 2014. - Т. 13. - № 1 (49). - С. 83-99.

12. Ноздрачев А. Д. Химическая структура периферического автономного (висцерального) рефлекса // Успехи физиологических наук. - 1996. - Т. 27. - № 2. - С. 28-60.

13. Поленов С. А., Дворецкий Д. П., Чернявская Г. В. Вазомоторные эффекты нейропептидов // Физиологический журнал им. И. М. Сеченова. - 1995. - № 6 (81). - С. 29-47.

14. Ткаченко Б. И. Венозное кровообращение. - Л.: Медицина, 1979. - 224 с.

15. Чернух А. М., Александров П. Н., Алексеев О. В. Микроциркуляция. - М.: Медицина, 1984. - 456 c.

16. Швалев В. Н. Возрастные изменения регуляторных механизмов сердечно-сосудистой системы и значение синтетазы оксида азота в норме и при патологии // Кардиология. - 2007. - Т. 47. - № 5. - С. 67-72.

17. Arck P. C., Slominski A., Theoharides T. C. et al. Neuroimmunology of stress: skin takes center stage. J. Investig. Dermatol. 2006; 126: 1697-1704. doi: 10.1038/sj.jid.5700104.

18. Arildsson M., Asker C. L., Salerud E. G., Stromberg T. Skin capillary appearance and skin microvascular perfusion due to topical application of analgesia cream. Microvasc. Res. 2000; 59: 14-23. doi: 10.1006/mvre.1999.2206.

19. Basler A. Uber die bestimmung der stromungsgeschwindigkeit in den blutkapilallen der menschlichen haut. Muench. Med. Wocheschr. 1919; 13: 347-348.

20. Boegehold M. A. Shear-dependent release of venular nitric oxide: effect on arteriolar tone in rat striated muscle. Am. J. Physiol. (Heart Circ. Physiol.) 1996; 271: H387-H1395.

21. Bollinger A., Butti P., Barras J. P. et al. Red blood cell velocity in nailfold capillaries of man measured by a television microscopy technique. Microvasc. Res. 1974; 7(1): 61-72. doi: https://doi.org/10.1016/0026-2862(74)90037-5.

22. Braverman I. M. The cutaneous microcirculation: ultrastructure and microanatomical organization. Microcirc. 1997; 4(3): 329-340.

23. Burton A. C. Role of geometry size and shape in the microcirculation. Fed. Proc. 1966; 25: 1753-1760.

24. Butti P., Intaglietta M., Reimann H. et al. Capillary red blood cell velocity measurements in human nailfold by videodensitometric method. Microvasc. Res. 1975; 10(2): 1-8. doi: https://doi.org/10.1016/0026-2862(75)90010-2.

25. Caro C. G., Pedley T. J., Schroter R. C., Seed W. A. The mechanics of the circulation. Second Edition. Cambridge University Press; 2012. 524 p.

26. Chambers R., Zweifach B. W. Functional activity of blood capillary bed, with special reference to visceral tissue. Ann. NY Acad. Sci. 1944; 46: 683-694.

27. DeGraff J. C., Ubbink D. T., Lagard S. M., Jacobs M. J. The feasibility and reliability of capillary blood pressure measurements in the fingernail fold. Microvasc. Res. 2002; 63(3): 270-278. doi: 10.1006/mvre.2001.2388.

28. Donadio V., Nolano M., Provitera V. et al. Skin sympathetic adrenergic innervation: An immunofluorescence confocalstudy. Ann. Neurol. 2006; 59: 376-381. doi: 10.1002/ ana.20769.

29. Drummond P. D. The effect of sympathetic blockade on facial sweating and cutaneous vascular responses to painful stimulation of the eye. Brain. 1993; 116: 233-241.

30. Duling B. R., Berne R. M. Propagated vasodilation in the microcirculation of the hamster cheek pouch. Circ. Res. 1970; 26: 163-170. doi: https://doi.org/10.1161/01.RES.26.2.163.

31. Eichna L. W. Capillary blood pressure in man. Direct measurements in the digits during arterial hypertension inducedbyparedrinolsulfate. J. Clin. Invest. 1942; 21(6): 711-729. doi: 10.1172/JCI101348.

32. Eichna L. W., Bordeley J. Capillary bloodpressure in man. Comparison of direct and indirect methods of measurement. J. Clin. Invest. 1939; 18(6): 695-704. doi: 10.U72/JCU01085.

33. Fagrell B., Fronek A., Intaglietta M. A microscope television system for studying flow velocity in human skin capillaries. Am. J. Physiol. 1977; 233: 318-321.

34. Falcone J. C., Bohlen H. G. EDRF from rat intestine and skeletal muscle venules causes dilation of arterioles. Am. J. Physiol. (Heart Circ. Physiol.) 1990; 258: H1515-H1523.

35. Fedorovich A. A. Non-invasive evaluation of vasomotor and metabolic functions of microvascular endothelium in human skin. Microvasc. Res. 2012; 84: 86-93. doi: 10.1016/j.mvr.2012.03.011.

36. Fegan P. G., Tooke J. E., Googing K. M. et al. Capillary pressure in subjects with type 2 diabetes and hypertension and the effect of antihypertensive therapy. Hypertens. 2003; 41(5): 1111-1117. doi: https://doi.org/10.H61/01.HYP.0000068200.09187.1E.

37. Fraser P. A., Smaje L. H., Verrinder A. Microvascular pressures and filtration on coefficients in the cat mesentery. J. Physiol. (London). 1978; 283: 439-456. doi: 10.1113/jphysiol.1978.sp012511.

38. Fung Y. C. Microscopic blood vessels in the mesentery in Biomechanics a proceeding. New York, ASME; 1966. p. 151-166.

39. Fung Y. C. Theoretical considerations of the elasticity of red cells and small blood vessels. Fed. Proc. 1966; 25: 1761-1772.

40. Gore R. W. Fluid exchange across single capillaries in rat intestinal muscle. Am. J. Physiol. 1982; 242: 268-287.

41. Hahn M., Hahn C., Brauer K., Junger M. Skin thermoregulation during local cooling in healthy volunteers and patients with systemic sclerosis - synchronous assessment of capillary red blood cell velocity, laser Doppler flux and skin temperature. Vasa. 1998; 27(1): 3-9.

42. Hahn M., Heubach T., Steins A., Junger M. Hemodynamics in nailfold capillaries of patients with systemic scleroderma: synchronous measurements ofcapillary blood pressure and red blood cell velocity. J. Invest. Dermatol. 1998; 110(6): 982-985. doi: 10.1046/j.1523-1747.1998.00190.x.

43. Hahn M., Junger M., Shore A. C. The effect of prostaglandin E1 on nailfold capillary blood pressure and red blood cell velocity in humans. Clin. Hemorheol. Micocirc. 2004; 31(3): 227-234.

44. Hahn M., Klyscz T., Junger M. Synchronous measurements of capillary blood pressure and red blood cell velocity in capillaries of human skin. J. Invest. Dermatol. 1996; 106(6): 1256-1259.

45. Hahn M., Shore A. C. The effect of rapid local cooling on human finger nailfold capillary blood pressure and blood cell velocity. J. Physiol. 1994; 478(1): 109-114. doi: 10.1113/jphysiol.1994.sp020234.

46. Hammer L. W., Ligon A. L., Hester R. L. ATP-mediated release of arachidonic acid metabolites from venular endothelium causes arteriolar dilation. Am. J. Physiol. (Heart Circ. Physiol.) 2001; 280: H2616-H2622.

47. Hester R. L. Venular-arteriolar diffusion of adenosine in hamster cremaster microcirculation. Am. J. Physiol. (Heart Circ. Physiol.) 1990; 258: H1918-H1924.

48. Holovatz L. A., Thompson-Torgerson C. S., Kenney W. L. The human cutaneous circulation as model of generalized microvascular function. J. Appl. Physiol. 2008; 105: 370-372. doi: 10.1152/japplphysiol.00858.2007.

49. Intaglietta M. Pressure Permeability relations in capillaries of the rabbit omentum. Bidl. Anat. (Basel). 1969; 10: 238-240.

50. Izumi H. Nervous control of blood flow in orofacial region. Pharmacol. Ther. 1999; 81: 141-161. doi: https://doi.org/10.1016/S0163-7258(98)00040-0.

51. Jacobs M., Slaaf D., Lemmens J., Reneman R. The use of hemorheological and microcirculatory parameters in evaluating the affect of treatment in Raynaud’s phenomenon. Vasc. Surg. 1987; 21: 9-15.

52. James M. A., Tullett J., Hemsley A. G., Shore A. C. Effects of aging and hypertension on the microcirculation. Hypertens. 2006; 47(5): 968-974. doi: https://doi.org/10.1161/01.HYP.0000209939.05482.61.

53. Kastrup J., Bulow J., Lassen N. A. Vasomotion in human skin before and after local heating recorder with laser Doppler flowmetry. Int. J. Microcirc. 1989; 8: 205-215.

54. Kvandal P., Landsverk S. A., Bernjak A. et al. Low-frequency oscillations of the laser Doppler perfusion signal in human skin. Microvasc. Res. 2006; 72(3): 120-127. doi: 10. 1016/j.mvr.2006.05.006.

55. Kvandal P., Stefanovska A., Veber M. et al. Regulation of human cutaneous circulation evaluated by laser Doppler flowmetry, iontophoresis, and spectral analysis: importance of nitric oxide and prostaglandins. Microvasc. Res. 2003; 65: 160-171. doi: https://doi.org/10.1016/S0026-2862(03)00006-2.

56. Landis E. M. Capillary pressure and capillary permeability. Physiol. Rev. 1934; 14: 404-481.

57. Landis E. M. Micro-injection studies of capillary blood pressure in human skin. Heart. 1930; 15: 209-228.

58. Lewick J. R., Michel C. C. The effects of position and skin temperature on the capillary pressures in the fingers and toes. J. Physiol. 1978; 274: 97-109. doi: 10.1113/jphysiol.1978.sp012136.

59. Lossius K., Eriksen M., Walloe L. Fluctuations in blood flow to acral skin in humans: connection with heart rate and blood pressure variability. J. Physiol. 1993; 460: 641-655. doi: 10.1113/jphysiol.1993.sp019491.

60. Mahler F., Muheim M. H., Intaglietta M. Continuous measurement of pressure in human nailfold capillaries. Bibl. Anat. 1977; 16(2): 109-111.

61. Mahler F., Muheim M. H., Intaglietta M. et al. Blood pressure fluctuations in human nailfold capillaries. Am. J. Physiol. 1979; 236(6): H888-H893.

62. Mahler F., Nagel G., Saner H., Kneubuhl F. In vivo comparison of the nailfold capillary diameters as determined by using the erythrocyte column and FITC-labelled albumin. Int. J. Microcirc.: Clin. Exp. 1983; 2: 147-183.

63. Mahler F., Sanner H., Annaheim M., Linder H. R. Capillaroscopic evaluation of erythrocyte flow velocity in patients with Raynaud’s syndrome by means of a local cold exposure test. Prog. Appl. Microcirc. 1986; 11: 47-59.

64. Mahy I. R., Shore A. C., Smith L. D., Tooke J. E. Disturbance of peripheral microvascular function in congestive heartfailure secondary to idiopathic dilated cardiomyopathy. Cardiovasc. Res. 1995; 30(6): 939-944.

65. Mahy I. R., Shore A. C., Smith L. D., Tooke J. E. The peripheral microcirculation in atrial fibrillation: preservation of capillary pressure andfiltration coefficient. Cardiovasc. Res. 1994; 28(10): 1555-1558.

66. Mahy I. R., Tooke J. E., Shore A. C. Capillary pressure during and after incremental venous pressure elevation in man. J. Physiol. 1995; 485(1): 213-219. doi: 10.1113/jphysiol.1995.sp020725.

67. McKay M. K., Gardner A. L., Boyd D., Hester R. Influence of venular prostaglandin release on arteriolar diameter during functional hyperemia. Hypertension. 1998; 31(2): 213-217. doi: https://doi.org/10.1161/01.HYP.31A.213.

68. Meyer M. F., Rose C. J., Hulsmann J. O. et al. Impaired 0.1-Hz vasomotion assessed by laser Doppler anemometry as an early index of peripheral sympathetic neuropathy in diabetes. Microvasc. Res. 2003; 65(2): 88-95. doi: https://doi.org/10.1016/S0026-2862(02)00015-8.

69. Morris S. J., Kunzek S., Shore A. C. The effect of acetylcholine on finger capillary pressure and capillary flow in healthy volunteers. J. Physiol. 1996; 494(1): 307-313. doi: 10.1113/jphysiol.1996.sp021493.

70. Muck-Weymann M. E., Tritt K., Hornstein O. P. et al. Rhythmical changes of the cutaneous blood flow in the forehead region under the condition of hypnoid relaxation. Vasa. 1998; 27(4): 220-223.

71. Nellore K., Harris N. R. Nitric oxide measurements in rat mesentery reveal disrupted venulo-arteriolar communication in diabetes. Microcirc. 2004; 11: 415-423. doi: 10.1080/10739680490457809.

72. Ostergren J., Fagrell B., Svedman P. The influence of venous and arterial occlusion on skin capillary bloodflow on transcutaneous oxygen tension in fingers. Int. J. Microcirc.: Clin. Exp. 1983; 2: 315-324.

73. Popoff N. W. The digital vascular system - With reference to the state Glomus in inflammation Arteriosclerotic gangrene, diabetic gangrene trombo-angiitis obliterans and supernumerary digits in man. Arch. Pathol. 1934; 18: 295-330.

74. Richardson D. Relationship between digital artery and nailfold capillary flow velocities in human skin. Microcirc. 1982; 2: 283-296.

75. Saito Y., Eraslan A., Hester R. L. Importance of venular flow in control of arteriolar diameter in hamster cremaster muscle. Am. J. Physiol. (Heart Circ. Physiol.) 1993; 265: H1294-H1300.

76. Schmid-Schonbein H., Zied S., Rutten W., Heidtmann H. Active and passive modulation of cutaneous red cell flux as measured by Laser Doppler anemometry. Vasa 1992; 34: 38-47.

77. Segal S. S. Integration and modulation of intercellular signaling underlying blood flow control. J. Vasc. Res. 2015; 52(2): 136-157. doi: 10.1159/000439112.

78. Segal S. S., Damon D. N., Duling B. R. Propagation of vasomotor responses coordinates arteriolar resistances. Am. J. Physiol. (Heart Circ. Physiol.) 1989; 256: H832-H837.

79. Segal S. S., Duling B. R. Flow control among microvessels coordinated by intercellular conduction. Sciene. 1986; 234: 868-870. doi: 10.1126/science.3775368.

80. Shore A. C., Jaap A. J., Tooke J. E. Capillary pressure in patients with NIDDM. Diabetes. 1994; 43(10): 1198-1202. doi: https://doi.org/10.2337/diab.43.10.1198.

81. Shore A. C., Sandeman D. D., Tooke J. E. Capillary pressure, pulse pressure amplitude, and pressure waveform in healthy volunteers. Am. J. Physiol. 1995; 268(1): H147-H154.

82. Shore A. C., Sandeman D. D., Tooke J. E. Effect of an increase in systemic bloodpressure on nailfold capillary pressure in humans. Am. J. Physiol. 1993; 265(3): H820-H823.

83. Taylor N. A., Machado-Moreira C. A., van den Heuvel A. M., Caldwell J. N. Hands and feet: physiological insulators, radiators and evaporators. Eur. J. Appl. Physiol. 2014; 114: 2037-2060. doi: 10.1007/s00421-014-2940-8.

84. Thoresen M., Walloe L. Skin blood flow in humans as a function of environmental temperature measured by ultrasound. Acta Physiol. Scand. 1980; 109: 333-341. doi: 10.1111/j.1748-1716.1980.tb06604.x.

85. Thorn C. E., Kyte H., Slaff D. W., Shore A. C. An association between vasomotion and oxygen extraction. Am. J. Physiol. Heart Circ. Physiol. 2011; 301: H442-H449. doi: 10.1152/ajpheart.01316.2010.

86. Tigno X. T., Ley K., Pries A. R., Haehtgens P. Venulo-arteriolar communication andpropagated response. A possible mechanism for local control of bloodflow. Pflugers Arch (Eur. J. Physiol). 1989; 414: 450-456.

87. Tikhonova I. V., Tankanag A. V., Chemeris N. K. Time-amplitude analysis of skin blood flow oscillations during the post-occlusive reactive hyperemia in human. Microvasc. Res. 2010; 80: 58-64. doi: 10.1016/j.mvr.2010.03.010.

88. Tooke J. E. A capillary pressure disturbance on young diabetics. Diabetes. 1980; 29(10): 815-819. doi: https://doi.org/10.2337/diacare.20.10.815.

89. Tooke J. E., Ostergren J., Fagrell B. Synchronous assessment of human skin microcirculation by laser Doppler flowmetry and dynamic capillaroscopy. Int. J. Microcirc.: Clin. Exp. 1983; 2(4): 277-284.

90. Tooke J. E., Tindall H., McNicol G. P. The influence of a combined oral contraceptive pill and menstrual cycle phase on digital microvascular haemodynamics. Clin. Sci. (Lond). 1991; 61(1): 91-95. doi: 10.1042/cs0610091.

91. Williams S. A., Wasserman S., Rawlinson D. W. et al. Dynamic measurement of human capillary blood pressure. Clin. Sci. (Lond.). 1988; 74(5): 507-512. doi: 10.1042/cs0740507.

92. Yu-Ying-Cheng, Tyml K. Capillary adrenoreceptors in rat skeletal muscle. Microvasc. Res. 1997; 53(3): 235-244. doi: https://doi.org/10.1006/nvre.1997.2009.

93. Zweifach B. W. Quantitative studies ofmicrocirculatory structure and function. II. Direct measurement of capillary pressure in splanchnic mesenteric vessels. Circ. Res. 1974; 34: 858-866. doi: https://doi.org/10.1161/01.RES.34.6.858.

94. Zweifach B. W., Intaglietta M. Mechanics of fluid movement across single capillaries in the rabbit. Microvasc. Res. 1968; 1(1): 83-101. doi: https://doi.org/10.1016/0026-2862(68)90008-3.


Review

For citations:


Fedorovich A.A. Microcirculation of the human skin as an object of research. Regional blood circulation and microcirculation. 2017;16(4):11-26. (In Russ.) https://doi.org/10.24884/1682-6655-2017-16-4-11-26

Views: 1754


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-6655 (Print)
ISSN 2712-9756 (Online)