Preview

Regional blood circulation and microcirculation

Advanced search

Influence of polylactide wound dressings with tannic acid on serum concentration of markers of angiogenesis, endothelial cell alteration and activation in white rats during healing of experimental full-thickness skin defect

https://doi.org/10.24884/1682-6655-2024-23-3-81-88

Abstract

Introduction. The development of effective treatment of skin wounds is the one of the current challenges. Synthetic wound dressings based on polylactide, capable of targeted delivery of biologically active substances, provide new solutions to the problem of stimulating regeneration. Tannic acid seems to be a promising substance as a component of wound dressings due to its antiinflammatory and antioxidant effects. The aim of the study was to assess the changes in the serum concentrations of markers of angiogenesis, endothelial cell alteration and activation under the influence of microchamber polylactide wound dressings loaded with tannic acid during the healing of an experimental full-thickness skin defect in white rats. Materials and Methods. The experiment was carried out on 63 white male rats, divided into four groups: intact animals (n=9), comparison group (n=18), experimental groups No. 1, 2 (n=18 each). A 10×10 mm acute excisional skin wound model was surgically created in animals of the comparative and experimental groups. Animals in the experimental group № 1 received a polylactide microchamber wound dressing without active components on the formed skin defect. The rats of experimental group № 2 received a similar dressing with its microchambers loaded with tannic acid. The concentrations of vascular endothelial growth factor (VEGF), syndecan-1, and sE-selectin in the blood were assessed. Results. It was found that the healing of a full-thickness skin defect in rats is accompanied by alteration and activation of the endothelium, characterized by an increase in serum concentrations of syndecan-1 in 4.4 times and sE-selectin in 2.2 times. There is also an activation of angiogenesis with increase in VEGF concentration 1.7 times on the 7th day and 6.5 times on the 14th day of the experiment. Dressings with tannic acid cause a decrease in the alteration of the endothelial glycocalyx and inflammatory activation of endothelial cells, which is manifested by a decrease in serum concentrations of VEGF and syndecan-1 by 2 times and sE-selectin by 1.7 times on the 7th day of the experiment compared to the analogue without active components and complete normalization of the serum concentration of the angiogenesis stimulator VEGF by the 14th day of the experiment. Conclusion. Polylactide wound dressings with micro-chambers filled with tannic acid have a significant effect on the course of the wound process in rats with a full-thickness skin defect.

About the Authors

A. N. Ivanov
V. I. Razumovsky Saratov State Medical University
Russian Federation

Ivanov Alexey N. – Doctor of Medical Sciences, Head, Department of Laboratory Diagnostics, Research Institute of Traumatology, Orthopedics and Neurosurgery; Head, Central Scientific Research Laboratory; Head, Department of Normal Physiology named after I. A. Chuevsky,

112, Bolshaya Kazachya str., Saratov, 410012.



M. A. Sahan
V. I. Razumovsky Saratov State Medical University
Russian Federation

Sahan Maksim A. – Assistant, Department of Normal Physiology named after I.A. Chuevsky; Junior Researcher, Central Research Laboratory,

112, Bolshaya Kazachya str., Saratov, 410012.



A. V. Ermakov
V. I. Razumovsky Saratov State Medical University
Russian Federation

Ermakov Alexey V. – Candidate (PhD) of Physical and Mathematical Sciences, Senior Researcher, Central Research Laboratory,

112, Bolshaya Kazachya str., Saratov, 410012.



A. A. Savkina
V. I. Razumovsky Saratov State Medical University
Russian Federation

Savkina Angelina A. – Junior Researcher, Central Research Laboratory,

112, Bolshaya Kazachya str., Saratov, 410012.



V. V. Nikitina
V. I. Razumovsky Saratov State Medical University
Russian Federation

Nikitina Victoria V. – Candidate (PhD) of Medical Sciences, Associate Professor, Department of Biochemistry, Senior Researcher, Central Research Laboratory,

112, Bolshaya Kazachya str., Saratov, 410012.



T. V. Stepanova
V. I. Razumovsky Saratov State Medical University
Russian Federation

Stepanova Tatyana V. – Junior Researcher, Central Research Laboratory,

112, Bolshaya Kazachya str., Saratov, 410012.



E. V. Lengert
V. I. Razumovsky Saratov State Medical University
Russian Federation

Lengert Ekaterina V. – Junior Researcher, Central Research Laboratory,

112, Bolshaya Kazachya str., Saratov, 410012.



T. S. Kiriyazi
V. I. Razumovsky Saratov State Medical University
Russian Federation

Kiriyazi Tatyana S. – Candidate (PhD) of Biological Sciences, Associate Professor, Department of Normal Physiology named after I. A. Chuevsky, Senior Researcher, Central Research Laboratory,

112, Bolshaya Kazachya str., Saratov, 410012.



References

1. Sen CK. Human Wounds and Its Burden: An Updated Compendium of Estimates. Advances in wound care. 2019; 8(2):39-48. Doi: 10.1089/wound.2019.0946.

2. Agrawal P, Soni S, Mittal G, Bhatnagar A. Role of polymeric biomaterials as wound healing agents. Int J Low Extremity Wounds. 2014;13(3):180-190. Doi: 10.1177/1534734614544523.

3. Negut I, Dorcioman G, Grumezescu V. Scaffolds for Wound Healing Applications. Polymers. 2020;12(9):2010. Doi: 10.3390/polym12092010.

4. Zhang J, Song C, Han Y, Xi Z, Zhao L, Cen L, Yang Y. Regulation of inflammatory response to polyglycolic acid scaffolds through incorporation of sodium tripolyphosphate. Eur Polym J. 2020;122:109349. Doi: 10.1016/j.eurpolymj.2019.109349.

5. Joseph B, Augustine R, Kalarikkal N, Thomas S, Seantier B, Grohens Y. Recent advances in electrospun polycaprolactone based scaffolds for wound healing and skin bioengineering applications. Mater Today Commun. 2019;19:319-335. Doi: 10.1016/j.mtcomm.2019.02.009.

6. Hamad K. Properties and medical applications of poly (lactic acid): A review. Express Polym Lett. 2015;9(5):435455. Doi: 10.3144/expresspolymlett.2015.42.

7. Radhakumary C, Antonty M, Sreenivasan K. Drug loaded thermoresponsive and cytocompatible chitosan based hydrogel as a potential wound dressing. Carbohydr Polym. 2011;83(2):705-713. Doi: 10.1016/j.carbpol.2010.08.042.

8. Wang X, Cheng F, Liu J, Smatt JH, Gepperth D, Lastusaari M, Xu C, Hupa L. Biocomposites of copper-containing mesoporous bioactive glass and nanofibrillated cellulose: Biocompatibility and angiogenic promotion in chronic wound healing application. Acta biomater. 2016;46:286-298. Doi: 10.1016/j.actbio.2016.09.021.

9. Cheng M, Hu L, Xu G, Pan P, Liu Q, Zhang Z, He Z, Wang C, Liu M, Chen L, Chen J. Tannic acid-based dualnetwork homogeneous hydrogel with antimicrobial and prohealing properties for infected wound healing. Colloids Surf B Biointerfaces. 2023;227:113354. Doi: 10.1016/j.colsurfb.2023.113354.

10. Смотрин С.М., Довнар Р.И., Васильков А.Ю. и др. Влияние перевязочного материала, содержащего наночастицы золота или серебра, на заживление экспериментальной раны // Журн. ГГМУ. – 2012. – № 1. – С. 75–80. [Smotrin SM, Dovnar RI, Vasilkov AYu, Prokopchik NI, Ioskevich NN. The effect of dressing material containing gold or silver nanoparticles on the healing of an experimental wound. J Grodno State Med University. 2012;1(37):75-80. (in Russ.)].

11. Иванов А.Н., Ермаков А.В., Ленгерт Е.В. и др. Раневое микрокамерное покрытие из полилактида и способ его получения. Патент № 281120; заявл. 2023117375/04(037127) от 30.06.2023. Опубликовано: 11.01.2024 Бюл. № 2. [Ivanov AN, Ermakov AV, Lengert EV, Stepanova TV, Savkina AA, Kiriyazi TS. Wound microchamber coating made of polylactide and method for its production. Patent 2811200, Appl. 2023117375/04(037127) 06/30/2023. Published: 01/11/2024 Bull. No. 2.2023. (in Russ.)].

12. Gopal S. Syndecans in Inflammation at a Glance. Front Immunol. 2020;11:227. Doi: 10.3389/fimmu.2020.00227.

13. McDonald, KK, Cooper S, Danielzak L, Leask RL. Glycocalyx Degradation Induces a Proinflammatory Phenotype and Increased Leukocyte Adhesion in Cultured Endothelial Cells under Flow. PloS one. 2016;11(12):e0167576. Doi: 10.1371/journal.pone.0167576.

14. Voyvodic PL, Min D, Liu R, Williams E, Chitalia V, Dunn AK, Baker AB. Loss of syndecan-1 induces a pro-inflammatory phenotype in endothelial cells with a dysregulated response to atheroprotective flow. J Biol Chem. 2014; 289(14):9547-9559. Doi: 10.1074/jbc.M113.541573.

15. Silva M, Videira PA, Sackstein R. E-Selectin Ligands in the Human Mononuclear Phagocyte System: Implications for Infection, Inflammation, and Immunotherapy. Front Immunol. 2018;8:1878. Doi: 10.3389/fimmu.2017.01878.

16. Shaik-Dasthagirisaheb YB, Varvara G, Murmura G, Saggini A, Potalivo G, Caraffa A, Antinolfi P, Tete S, Tripodi D, Conti F, Cianchetti E, Toniato E, Rosati M, Conti P, Speranza L, Pantalone A, Saggini R, Theoharides T C, Pandolfi F. Vascular endothelial growth factor (VEGF), mast cells and inflammation. Int J Immunopathol Pharmacol. 2013;26(2):327335. Doi: 10.1177/039463201302600206.

17. Johnson KE, Wilgus TA. Vascular Endothelial Growth Factor and Angiogenesis in the Regulation of Cutaneous Wound Repair. Adv Wound Care (New Rochelle). 2014;3(10):647-661. Doi: 10.1089/wound.2013.0517.

18. Aoki S, Kinoshita M, Miyazaki H, Saito A, Fujie T, Iwaya K, Takeoka S, Saitoh D. Application of poly-L-lactic acid nanosheet as a material for wound dressing. Plast Reconstr Surg. 2013;131(2):236-240. Doi: 10.1097/PRS.0b013e3182789c79.

19. Bi H, Feng T, Li B, Han Y. In Vitro and In Vivo Comparison Study of Electrospun PLA and PLA/PVA/SA Fiber Membranes for Wound Healing. Polymers. 2020;12(4):839. Doi: 10.3390/polym12040839.

20. Saveleva MS, Ivanov AN, Kurtukova MO, Atkin VS, Ivanova AG, Lyubun GP, Martyukova AV, Cherevko EI, Sargsyan AK, Fedonnikov A S, Norkin IA, Skirtach AG, Gorin DA, Parakhonskiy BV. Hybrid PCL/CaCO3 scaffolds with capabilities of carrying biologically active molecules: Synthesis, loading and in vivo applications. Mater Sci Eng C Mater Biol Appl. 2018;85:57-67. Doi: 10.1016/j.msec.2017.12.019.

21. Wu K, Fu M, Zhao Y, Gerhard E, Li Y, Yang J, Guo J. Anti-oxidant anti-inflammatory and antibacterial tannin-crosslinked citrate-based mussel-inspired bioadhesives facilitate scarless wound healing. Bioact mater. 2022;20:93-110. Doi: 10.1016/j.bioactmat.2022.05.017.

22. Chen Y, Tian L, Yang F, Tong W, Jia R, Zou Y, Yin L, Li L, He C, Liang X, Ye G, Lv C, Song X, Yin Z. Tannic Acid Accelerates Cutaneous Wound Healing in Rats Via Activation of the ERK 1/2 Signaling Pathways. Adv Wound Care (New Rochelle). 2019;8(7):341-354. Doi: 10.1089/wound.2018.0853.


Review

For citations:


Ivanov A.N., Sahan M.A., Ermakov A.V., Savkina A.A., Nikitina V.V., Stepanova T.V., Lengert E.V., Kiriyazi T.S. Influence of polylactide wound dressings with tannic acid on serum concentration of markers of angiogenesis, endothelial cell alteration and activation in white rats during healing of experimental full-thickness skin defect. Regional blood circulation and microcirculation. 2024;23(3):81-88. (In Russ.) https://doi.org/10.24884/1682-6655-2024-23-3-81-88

Views: 146


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-6655 (Print)
ISSN 2712-9756 (Online)