Preview

Regional blood circulation and microcirculation

Advanced search

Current methods for microvascular blood flow research

https://doi.org/10.24884/1682-6655-2024-23-4-5-21

Abstract

Interest in studying tissue microcirculation both from a researcher and a clinical specialist perspective is determined by the role of microcirculatory disorders in the development and progression of pathology and the possibility of using the obtained data to diagnose and control the disease treatment. Disorders of regulation and the structural and functional characteristics of the microcirculatory vessels are a link in the pathogenesis of most known pathological processes and conditions. Currently, there are a large number of methods that allow us to study the features of microvascular blood flow in norm and pathology. The review provides information on the most common modern non-radiological methods for microvascular blood flow research. We discuss the options, basic principles, advantages and limitations of individual methods based on the principles of plethysmography, Dopplerography, and changes in the optical properties of the tissue. Major trends in the improvement of approaches to the study of microcirculation are also noted.

About the Authors

Т. I. Vlasova
National Research Mordovia State University
Russian Federation

Vlasova Tatyana I. – MD, Professor; Head, Department of Normal and Pathological Physiology

68, Bol’shevistskaya str., Saransk, 430000



T. D. Vlasova
Pavlov University
Russian Federation

Vlasov Timur D. – MD, Professor, Head, Department of Pathophysiology (with a Course of Clinical Pathophysiology)

6-8, L’va Tolstogo str., Saint Petersburg, 197022



References

1. Secomb TW, Pries AR. The microcirculation: physiology at the mesoscale. J Physiol. 2011;589(5):1047-1052. Doi: 10.1113/jphysiol.2010.201541 .

2. Fedorovich AA. Microcirculation of the human skin as an object of research. Regional blood circulation and microcirculation. 2017;16(4):11-26. (In Russ.). Doi: 10.24884/1682-6655-2017-16-4-11-26.

3. Duranteau J, De Backer D, Donadello K, Shapiro NI, Hutchings SD, Rovas A, Legrand M, Harrois A, Ince C. The future of intensive care: the study of the microcirculation will help to guide our therapies. Crit Care. 2023;27(1):190. Doi: 10.1186/s13054-023-04474-x.

4. Sakai T, Hosoyamada Y. Are the precapillary sphincters and metarterioles universal components of the microcirculation? An historical review. J Physiol Sci. 2013;63(5):319-331. Doi: 10.1007/s12576-013-0274-7.

5. Heuter C. Die Cheilo Angioskopie, eine neue Untersuchungsmethode zu physiologischen. Zentralbl Med Wiss. 1879;(17):225-230.

6. Krogh A. The number and the distribution of capillaries in muscle with the calculation of the oxygen pressure necessary for supplying the tissue. J Physiol. 1919;52(6):409-515. Doi: 10.1113/jphysiol.1919.sp001839.

7. Hertzman AB. The blood supply of various skin areas as estimated by the photoelectric plethysmograph. Am J Physiol. 1938;124(2):328-340. Doi: 10.1152/ajplegacy.1938.124.2.328,

8. Stern MD, Lappe DL, Bowen PD, Chimosky JE, Holloway GA Jr, Keiser HR, Bowman RL. Continuous measurement of tissue blood flow by laser-Doppler spectroscopy. Am J Physiol. 1977;232(4):H441-H448. Doi: 10.1152/ajpheart.1977.232.4.H441.

9. Hu Y, Hu A, Song S. Photoplethysmography for Assessing Microcirculation in Hypertensive Patients After Taking Antihypertensive Drugs: A Review. J Multidiscip Healthc. 2024;17:263-274. Doi: 10.2147/JMDH.S441440.

10. Korolev AI, Fedorovich AA, Gorshkov AYu, Chashchin MG, Dadaeva VA, Mikhailova MA, Omelyanenko KV, Strelkova AV, Drapkina OM. Photoplethysmography factors associated with the presence of undetected arterial hypertension in men with low and moderate cardiovascular risk. Cardiovasc Ther Prevention. 2023;22(7): 6-15. (In Russ.). Doi: 10.15829/1728-8800-2023-3649.

11. Vorobiev LV. Possibilities of photoplethysmography in early diagnostics of diabetic angiopathy of the lower extremities. MEJ. 2017;13(3):208-214. (In Russ.).

12. Cimino G, Vizzardi E, Calvi E, Pancaldi E, Pascariello G, Bernardi N, Cersosimo A, Amore L, Inciardi RM, Raddino R, Metra M. Endothelial dysfunction in COVID-19 patients assessed with Endo-PAT2000. Monaldi Arch Chest Dis. 2022;92(4). Doi: 10.4081/monaldi.2022.2213.

13. Norimatsu K, Gondo K, Kusumoto T, Motozato K, Suematsu Y, Fukuda Y, Kuwano T, Miura SI. Association between lipid profile and endothelial dysfunction as assessed by the reactive hyperemia index. Clin Exp Hypertens. 2021;43(2):125- 130. Doi: 10.1080/10641963.2020.1825725.

14. Manasyan SG, Ermolov SYu, Apresyan AG, Arutyunyan AV. Modified methods of polygepatography and peripheral arterial tonometry in the assessment of peripheral circulation regulation. Arterial Hypertension. 2021;27(6):683-695. (In Russ.). Doi: 10.18705/1607-419X-2021-27-6-683-695.

15. Asiedu K, Krishnan AV, Kwai N, Poynten A, Markoulli M. Conjunctival microcirculation in ocular and systemic microvascular disease. Clin Exp Optom. 2023;106(7):694- 702. Doi: 10.1080/08164622.2022.2151872.

16. Andreeva IV, Grigoriev AS. Comprehensive study of age-related features of central, peripheral hemodynamics and microcirculation in individuals without cardiovascular diseases. Modern Issues of Biomedicine. 2024;8(1). (In Russ.).

17. Korolev AI, Fedorovich AA, Gorshkov AYu, Drapkina OM. Microcirculation of the skin with essential arterial hypertension. Regional hemodynamics and microcirculation. 2020;2(19);4-10. (In Russ.). Doi: 10.24884/1682-6655-2020-19-2-4-10.

18. Adyrkhaeva DA, Natarova EV, Ryumkina NA. Features of laser Doppler flowmetry indices in psoriasis. Bull New Med Technol. 2007;14(1):120-122. (In Russ.).

19. Balik O. Quantitative Assessment of the Effects of Botulinum Toxin on Skin Perfusion by Laser Doppler Flowmetry: A Clinical Trial. J Craniofac Surg. 2024;35(1):e11-e14. Doi: 10.1097/SCS.0000000000009639.

20. Dikareva LV, Gadzhieva PKh, Suverneva AA, Ukhanova YuYu, Vlasova NA. Application of laser Doppler flowmetry in gynecological practice. Astrakhan Med J. 2023;18(3):22-32. (In Russ.).

21. Baibekov IM, Butaev AKh, Baibekov AI. Laser Doppler flowmetry and the possibilities of its use for diagnostics in surgery. Bull Emergency Med. 2013;(2):56-59. (In Russ.).

22. Nurullina TN, Rogova NV, Vachugova AA, Khokhlova IV. Experience of using laser Doppler flowmetry in the treatment of a patient with diabetic foot syndrome. Med Сare. 2023;(1):111- 114. (In Russ.).

23. Sabioni L, De Lorenzo A, Lamas C, Muccillo F, CastroFaria-Neto HC, Estato V, Tibirica E. Systemic microvascular endothelial dysfunction and disease severity in COVID-19 patients: Evaluation by laser Doppler perfusion monitoring and cytokine/chemokine analysis. Microvasc Res. 2021; 134:104119. Doi: 10.1016/j.mvr.2020.104119.

24. Tambovtsev SA, Vlasova TI, Sitdikova AV, Pursanova AE, Fedoskina AS, Gromova EV. Disturbance of periodontal tissue microcirculation in acute period of new coronavirus infection (COVID-19). Regional blood circulation and microcirculation. 2023;22(3):51-56. (In Russ.). Doi: 10.24884/1682-6655-2023-22-3-51-56.

25. Garanin АА, Rogova VS, Ivanchina PS, Tolkacheva EO. Web photoplethysmography: opportunities and prospects. Regional blood circulation and microcirculation. 2023;22(4):11-16. (In Russ.). Doi: 10.24884/1682-6655-2023-22-4-11-16.

26. Volkov IY, Sagaidachnyi AA, Fomin AV. Photoplethysmographic imaging of hemodynamics and twodimensional oximetry. Izvestiya of Saratov University. Physics. 2022;22(1):15-45. (In Russ.). Doi: 10.18500/1817-3020-2022-22-1-15-45.

27. Yan BP, Lai WHS, Chan CKY et al. High-throughput, contact-free detection of atrial fibrillation from video with deep learning. JAMA Cardiol. 2020;5(1):105-107. Doi: 10.1001/jamacardio.2019.4004.

28. Marcinkevics Z, Aglinska A, Rubins U, Grabovskis A. Remote Photoplethysmography for Evaluation of Cutaneous Sensory Nerve Fiber Function. Sensors (Basel). 2021; 21(4): 1272. Doi: 10.3390/s21041272.

29. Njoum H, Kyriacou PA. Photoplethysmography for the Assessment of Haemorheology. Sci Rep. 2017;7(1):1406. Doi: 10.1038/s41598-017-01636-0.

30. Kashchenko VA, Zaytsev VV, Ratnikov VA, Kamshilin AA. Intraoperative visualization and quantitative assessment of tissue perfusion by imaging photoplethysmography: comparison with ICG fluorescence angiography. Biomed Opt Express. 2022;13(7):3954-3966. Doi: 10.1364/BOE.462694.

31. Shahid S, Duarte MC, Zhang J, Markeson D, Barnes D. Laser doppler imaging - the role of poor burn perfusion in predicting healing time and guiding operative management. Burns. 2023;49(1):129-136. Doi: 10.1016/j.burns.2022.02.009.

32. Pauling JD, Hackett N, Guida A, Merkel PA. Performance of laser-derived imaging for assessing digital perfusion in clinical trials of systemic sclerosis-related digital vasculopathy: A systematic literature review. Semin Arthritis Rheum. 2020;50(5):1114-1130. Doi: 10.1016/j.semarthrit.2020.06.018.

33. Ruaro B, Bruni C, Wade B, Baratella E, Confalonieri P, Antonaglia C, Geri P, Biolo M, Confalonieri M, Salton F. Laser Speckle Contrast Analysis: Functional Evaluation of Microvascular Damage in Connective Tissue Diseases. Is There Evidence of Correlations With Organ Involvement, Such as Pulmonary Damage? Front Physiol. 2021;12:710298. Doi: 10.3389/fphys.2021.710298.

34. Kajiwara N, Masaki C, Mukaibo T, Kondo Y, Nakamoto T, Hosokawa R. Soft tissue biological response to zirconia and metal implant abutments compared with natural tooth: microcirculation monitoring as a novel bioindicator. Implant Dent. 2015;24(1):37-41. Doi: 10.1097/ID.0000000000000167.

35. Zheng KJ, Middelkoop E, Stoop M, van Zuijlen PPM, Pijpe A. Validity of laser speckle contrast imaging for the prediction of burn wound healing potential. Burns. 2022;48(2): 319-327. Doi: 10.1016/j.burns.2021.04.028.

36. Heeman W, Steenbergen W, van Dam G, Boerma EC. Clinical applications of laser speckle contrast imaging: a review. J Biomed Opt. 2019;24(8):1-11. Doi: 10.1117/1.JBO.24.8.080901.

37. Richards LM, Towle EL, Fox DJ Jr, Dunn AK. Intraoperative laser speckle contrast imaging with retrospective motion correction for quantitative assessment of cerebral blood flow. Neurophotonics. 2014;1(1):015006. Doi: 10.1117/1.NPh.1.1.015006.

38. Simanenkova AV, Makarova MN, Vasina LV et al. Microcirculatory dopplerography as a method to evaluate drugs endothelial protective properties in type 2 diabetic patients. Regional hemodynamics and microcirculation. 2018;17(3):120-128. (In Russ.). Doi: 10.24884/1682-6655-2018-17-3-120-128.

39. Lenasi H, Potočnik N, Petrishchev N et al. The measurement of cutaneous blood flow in healthy volunteers subjected to physical exercise with ultrasound Doppler imaging and laser Doppler flowmetry. Clin Hemorheol Microcirc. 2017;65(4):373-381. Doi: 10.3233/CH16204.

40. Harput S, Christensen-Jeffries K, Brown J, Li Y, Williams KJ, Davies AH, Eckersley RJ, Dunsby C, Tang M. TwoStage Motion Correction for Super-Resolution Ultrasound Imaging in Human Lower Limb. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2018;65(5): 803-814. Doi: 10.1109/TUFFC.2018.2824846.

41. Opacic T, Dencks S, Theek B, Piepenbrock M, Ackermann D, Rix A, Lammers T, Stickeler E, Delorme S, Schmitz G, Kiessling F. Motion model ultrasound localization microscopy for preclinical and clinical multiparametric tumor characterization. Nat Commun. 2018;9(1):1527. Doi: 10.1038/s41467-018-03973-8.

42. Dencks S, Piepenbrock M, Opacic T, Krauspe B, Stickeler E, Kiessling F, Schmitz G. Clinical Pilot Application of Super-Resolution US Imaging in Breast Cancer. IEEE Trans Ultrason Ferroelectr Freq Control. 2019;66(3):517-526. Doi: 10.1109/tuffc.2018.2872067.

43. Сutolo M, Sulli A, Pizzorni C, Smith V. Capillaroscopy. In book: Skin Manifestations in Rheumatic Disease. New York, Springer, 2014:93-99.

44. Grassi W, De Angelis R. Capillaroscopy: questions and answers. Clin Rheumatol. 2007;26(12):2009. Doi: 10.1007/s10067-007-0681-3.

45. Putowski Z, Pluta MP, Rachfalska N, Krzych ŁJ, De Backer D. Sublingual Microcirculation in Temporary Mechanical Circulatory Support: A Current State of Knowledge. J Cardiothorac Vasc Anesth. 2023;37(10):2065-2072. Doi: 10.1053/j.jvca.2023.05.028.

46. Kozlov VI. Capillaroscopy in clinical practice : monograph. Moscow, Practical medicine, 2015:232. (In Russ.).

47. Morozov AM, Zhukov SV, Sorokovikova TV, Ilkaeva VN, Belyak MA, Pototskaya LA, Minakova JE. Medical thermovision: possibilities and prospects of the method. Meditsinskiy Sovet. 2022;16(6):256-263. (In Russ.). Doi: 10.21518/2079-701X2022-16-6-256-263.

48. Al-Khalidi FQ, Al-Kananee SH, Hussain SAA. Monitoring the breathing rate in the human thermal image based on detecting the region of interest. JATIT. 2021;99(8):1753-1760.

49. Elphick HE, Alkali AH, Kingshott RK, Burke D, Saatchi R. Exploratory Study to Evaluate Respiratory Rate Using a Thermal Imaging Camera. Respiration. 2019;97(3):205-212. Doi: 10.1159/000490546.

50. Savastano MC, Lumbroso B, Rispoli M. In vivo characterization of retinal vascularization morphology using optical coherence tomography angiography. Retina. 2015;35(11):2196- 2203. Doi: 10.1097/IAE.0000000000000635.

51. Pechauer AD, Jia Y, Liu L, Gao SS, Jiang C, Huang D. Optical coherence tomography angiography of peripapillary retinal blood flow response to hyperoxia. Invest Ophthalmol Vis Sci. 2015;56(5):3287-3291. Doi: 10.1167/iovs.15-16655.

52. Ud-Din S, Foden P, Stocking K, Mazhari M, Al-Habba S, Baguneid M, McGeorge D, Bayat A. Objective assessment of dermal fibrosis in cutaneous scarring, using optical coherence tomography, high-frequency ultrasound and immunohistomorphometry of human skin. Br J Dermatol. 2019; 181(4):722-732. Doi: 10.1111/bjd.17739.

53. Ding J, Li Q, Lin J, He S, Chen W, He Q, Zhang Q, Chen J, Wu T, Zhong S, Li D. Optical coherence tomography for the early detection of colorectal dysplasia and cancer: validation in a murine model. Quant Imaging Med Surg. 2021; 11(1):371-379. Doi: 10.21037/qims-20-13.

54. Berezhnoi A, Schwarz M, Buehler A, Ovsepian SV, Aguirre J, Ntziachristos V. Assessing hyperthermia-induced vasodilation in human skin in vivo using optoacoustic mesoscopy. J Biophotonics. 2018;11(11):e201700359. Doi: 10.1002/jbio.201700359.

55. Cao R, Zhang C, Mitkin VV, Lankford MF, Li J, Zuo Z et al. Comprehensive characterization of cerebrovascular dysfunction in blast traumatic brain injury using photoacoustic microscopy. J Neurotrauma. 2019;36(10):1526-1534. Doi: 10.1089/neu.2018.6062.

56. Krumholz A, Wang L, Yao J, Wang LV. Functional photoacoustic microscopy of diabetic vasculature. J Biomed Opt. 2012;17(6):060502. Doi: 10.1117/1.JBO.17.6.060502.

57. Rich LJ, Seshadri M. Photoacoustic monitoring of tumor and normal tissue response to radiation. Sci Rep. 2016; 6(1):21237. Doi: 10.1038/srep21237.

58. Kandurova KY, Dremin VV, Zherebtsov EA, Alyanov AL, Mamoshin AV, Potapova EV, Dunaev AV, Muradyan VF, Sidorov VV, Krupatkin AI. Optical biopsy methods and their prospects of application for intraoperative analysis of tissue metabolism and blood microcirculation in minimally invasive surgery. Regional blood circulation and microcirculation. 2018;17(3):71-79. (In Russ.). Doi: 10.24884/1682-6655-2018-17-3-71-79.

59. Sagaidachnyi AA. Reactive hyperemia test: methods of analysis, mechanisms of reaction and prospects. Regional blood circulation and microcirculation. 2018;17(3):5- 22. (In Russ.). Doi: 10.24884/1682-6655-2018-17-3-5-22.

60. Minson CT, Berry LT, Joyner MJ. Nitric oxide and neurally mediated regulation of skin blood flow during local heating. J Appl Physiol (1985). 2001;91(4):1619-1626. Doi: 10.1152/jappl.2001.91.4.1619.

61. Belaventseva AV, Podolyan NP, Volynsky MA, Zaytsev VV, Sakovskaia AV, Mamontov OV, Romashko RV, Kamshilin AA. Study of blood vessels reaction to local heating by imaging photoplethysmography. Sci Tech J Inf Technol Mech Opt. 2023;23(1):14-20. (In Russ.). Doi: 10.17586/2226-1494-2023-23-1-14-20.

62. Novikov YuA, Okhlopkov VA, Romanov AA, Radul EV, Semenkin AA, Protsky IA, Shitova VB, Chermoshentsev AA, Orlova LI, Nov gorodova TI. The risk assessment of development to cardiovascular pathology in patients with early forms of syphilis. Omsk Sci Bull. 2010;(1(94)):106-109. (In Russ.).

63. Tyazholova EV, Grigoryan LR. Study of human blood vessels using optical methods. Modern problems of physics, biophysics and infocommunication technologies. 2023;(13):181-190. (in Russ.). Doi: 10.24412/cl-35697-2023-241181.

64. Usanov DA. Methods and equipment for diagnosing the state of the cardiovascular system based on pulse wave characteristics / Usanov DA, Skripal AV, Vagarin AYu, Rytik AP. Saratov, Saratov University Publishing House, 2009:96. (In Russ.).

65. EndoPAT 2000 Device User Manual. Itamar Medical, Ltd., 2017:100.

66. Evdokimov DS, Boldueva SA, Leonova IA. A clinical case of takotsubo syndrome due to acute microvascular dysfunction on the background of generalized anxiety disorder. Cardiology: News, Opinions, Training. 2022;10(3):53-58. (In Russ.). Doi: 10.33029/2309-1908-2022-10-3-53-58.

67. Allen J. Photoplethysmography and its application in clinical physiological measurement. Physiol Meas. 2007;28(3): R1-R39. Doi: 10.1088/0967-3334/28/3/R01.

68. Alian AA, Shelley KH. Photoplethysmography. Best Pract Res Clin Anaesthesiol. 2014;28(4):395-406. Doi: 10.1016/j.bpa.2014.08.006.

69. Sagaidachnyi AA, Volkov IY, Tsoy MO, Fomin AV, Mayskov DI, Antonov AВ, Zaletov IS, Skripal AV. Assessment of spatiotemporal heterogeneity of two-dimensional images on the example of photoplethysmograpic imaging of hemodynamics. Izvestiya of Saratov University. Physics. 2023;23(2):128-140. (In Russ.). Doi: 10.18500/1817-3020-2023-23-2-128-140.

70. Aoyagi T, Kishi M, Yamaguchi K, Watanabe S. Improvement of the earpiece oximeter. Japan Soc Med Electron Biol Eng. 1974;974:90-91.

71. Kalakutsky LI, Lebedev PA, Komarova MV. Methodology for analyzing the pulse wave contour in the diagnosis of vascular endothelial function. Proceedings of Southern Federal University. Engineering Sci. 2008;82(5):43- 47. (In Russ.).

72. Dobrynina IYu, Karpin VA, Bogdanov AN, Kuzmina NV, Nelidova NV, Dobrynin YuV, Volkivskaya ED, Shuvalova OI, Burmasova AV. Vascular endothelial function of healthy young citizens of Ugra. Vestnik SurGU. Meditsina. 2012;(13):98-103. (In Russ.).

73. Kalinin RE, Suchkov IA, Gryaznov SV, Pshennikov AS, Rudakova IN, Slepnev AA. Computer photoplethysmography in the assessment of endothelial function. Bull Pirogov Nat Med Surg Center. 2016;11(1):91-93. (In Russ.).

74. Zaytsev VV, Mamontov OV, Kamshilin AA. Assessment of cutaneous blood flow in lower extremities by imaging photoplethysmography method. Sci Tech J Inf Technol Mech Opt. 2019;19(6):994-1003. (In Russ.). Doi: 10.17586/2226-1494-2019-19-6-994-1003.

75. Dcosta JV, Ochoa D, Sanaur S. Recent Progress in Flexible and Wearable All Organic Photoplethysmography Sensors for SpO2 Monitoring. Adv Sci (Weinh). 2023;10(31):e2302752. Doi: 10.1002/advs.202302752.

76. Wu T, Blazek V, Schmitt HJ. Photoplethysmography imaging: A new noninvasive and non-contact method for mapping of the dermal perfusion changes. Proc SPIE, Optical Techniques and Instrumentation for the Measurement of Blood Composition, Structure, and Dynamics. 2000;(4163):62-70. Doi: 10.1117/12.407646.

77. Varma N, Cygankiewicz I, Turakhia M, Heidbuchel H, Hu Y, Chen LY, Couderc JP, Cronin EM, Estep JD, Grieten L, Lane DA, Mehra R, Page A, Passman R, Piccini J, Piotrowicz E, Piotrowicz R, Platonov PG, Ribeiro AL, Rich RE, Russo AM, Slotwiner D, Steinberg JS, Svennberg E. 2021 ISHNE/HRS/EHRA/APHRS collaborative statement on mHealth in arrhyth-mia management: digital medical tools for heart rhythm professionals. Ann Noninvasive Electrocardiol. 2021;26(2):e12795. Doi: 10.1111/anec.12795.

78. Fedorovich AA, Gorshkov AYu, Drapkina OM. Modern possibilities of noninvasive research and remote monitoring of capillary blood flow in human skin. Regional blood circulation and microcirculation. 2020;19(4):87-91. (In Russ.). Doi: 10.24884/1682-6655-2020-19-4-87-91.

79. Schoettker P, Degott J, Hofmann G, Proença M, Bonnier G, Lemkaddem A, Lemay M, Schorer R, Christen U, Knebel JF, Wuerzner A, Burnier M, Wuerzner G. Blood pressure measurements with the OptiBP smartphone app validated against reference auscultatory measurements. Sci Rep.2020;10(1):17827. Doi: 10.1038/s41598-020-74955-4.

80. Iuchi K, Miyazaki R, Cardoso GC, Ogawa-Ochiai K, Tsumura N. Blood pressure estimation by spatial pulse-wave dynamics in a facial video. Biomed Opt Express. 2022; 13(11):6035-6047. Doi: 10.1364/BOE.473166.

81. Yu SG, Kim SE, Kim NH, Suh KH, Lee EC. Pulse Rate Variability Analysis Using Remote Photoplethysmography Signals. Sensors (Basel). 2021;21(18):6241. Doi: 10.3390/s21186241.

82. Kopeliovich MV, Petrushan MV. Optimal Facial Areas for Webcam-Based Photoplethysmography. Pattern Recognition and Image Analysis (Advances in Mathematical Theory and Applications). 2016;26(1):150-154. Doi: 10.1134/S1054661816010120.

83. Lombardi S, Partanen P, Bocchi L. Detecting sepsis from photoplethysmography: strategies for dataset preparation. Annu Int Conf IEEE Eng Med Biol Soc. 2022;2022:2286- 2289. Doi: 10.1109/EMBC48229.2022.9871973.

84. Wu MT, Liu IF, Tzeng YH, Wang L. Modified photoplethysmography signal processing and analysis procedure for obtaining reliable stiffness index reflecting arteriosclerosis severity. Physiol Meas. 2022;43(8). Doi: 10.1088/1361-6579/ac7d91.

85. Alam J, Khan MF, Khan MA, Singh R, Mundazeer M, Kumar P. A Systematic Approach Focused on Machine Learning Models for Exploring the Landscape of Physiological Measurement and Estimation Using Photoplethysmography (PPG). J Cardiovasc Transl Res. 2024;17(3):669-684. Doi: 10.1007/s12265-023-10462-x.

86. Duan Y, He C, Zhou M. Anti-motion imaging photoplethysmography via self-adaptive multi-ROI tracking and selection. Physiol Meas. 2023;44(11). Doi: 10.1088/1361-6579/ad071f.

87. Cao M, Burton T, Saiko G, Douplik A. Remote Photo plethysmography with a High-Speed Camera Reveals Temporal and Amplitude Differences between Glabrous and Non-Glabrous Skin. Sensors (Basel). 2023;23(2):615. Doi: 10.3390/s23020615.

88. Riva C, Ross B and Benedek G. Laser Doppler measurements of blood flow in capillary tubes and retinal arteries. Invest Ophthalmol. 1972;11:936-944.

89. Stern MD, Lappe DL, Bowen PD, Chimosky JE, Holloway GA Jr, Keiser HR, Bowman RL. Continuous measurement of tissue blood flow by laser-Doppler spectroscopy. Am J Physiol. 1977;232(4):H441-H448. Doi: 10.1152/ajpheart.1977.232.4.H441.

90. Laser Doppler flowmetry of blood microcirculation : guide / eds by A.I. Krupatkin, V.V. Sidorov. Moscow, Meditsina, 2005:256. (In Russ.).

91. Kvernebo K, Lunde OC. Laserdoppler-blodstrømsmåling [Laser Doppler blood flowmetry]. Tidsskr Nor Laegeforen. 1991;111(24):2966-2968.

92. Kozlov VI, Morozov MV, Gurova OA. Laser Doppler fluxmetry of the skin microcirculation in different areas of the body. Regional blood circulation and microcirculation. 2012;11(1):58-61. (In Russ.). Doi: 10.24884/1682-6655-2012-11-1-58-61.

93. Fagrell B, Nilsson G. Advantages and limitations of one-point laser Doppler perfusion monitoring in clinical practice. Vasc Med Rev. 1995;6:97-101.

94. Turner J, Belch JJ, Khan F. Current concepts in assessment of microvascular endothelial function using laser Doppler imaging and iontophoresis. Trends Cardiovasc Med. 2008;18(4):109-116. Doi: 10.1016/j.tcm.2008.02.001.

95. Thøgersen KF, Rasmussen KK, Høyer C, Zerahn B. Evaluation of a novel probe based on laser Doppler flowmetry and comparison with photo plethysmography for assessment of the skin perfusion pressure. Scand J Clin Lab Invest. 2022;82(3):238-245. Doi: 10.1080/00365513.2022.2056857.

96. Vcherashniy DB, Erofeev NP, Novoseltsev SV. The capabilities and limitations of the laser Doppler flowmetry method. Challenges in modern medicine. 2014;24(195):35-41. (In Russ.).

97. Katz MS, Ooms M, Winnand P, Heitzer M, Bock A, Kniha K, Hölzle F, Modabber A. Evaluation of perfusion parameters of gingival inflammation using laser Doppler flowmetry and tissue spectrophotometry- a prospective comparative clinical study. BMC Oral Health. 2023;23(1):761. Doi: 10.1186/s12903-023-03507-9.

98. Nowak-Sliwinska P, Alitalo K, Allen E, Anisimov A, Aplin AC, Auerbach R, Augustin HG, Bates DO, van Beijnum JR, Bender RHF, Bergers G, Bikfalvi A, Bischoff J, Böck BC, Brooks PC, Bussolino F, Cakir B, Carmeliet P, Castranova D, Cimpean AM, Cleaver O, Coukos G, Davis GE, De Palma M, Dimberg A, Dings RPM, Djonov V, Dudley AC, Dufton NP, Fendt SM, Ferrara N, Fruttiger M, Fukumura D, Ghesquière B, Gong Y, Griffin RJ, Harris AL, Hughes CCW, Hultgren NW, Iruela-Arispe ML, Irving M, Jain RK, Kalluri R, Kalucka J, Kerbel RS, Kitajewski J, Klaassen I, Kleinmann HK, Koolwijk P, Kuczynski E, Kwak BR, Marien K, Melero-Martin JM, Munn LL, Nicosia RF, Noel A, Nurro J, Olsson AK, Petrova TV, Pietras K, Pili R, Pollard JW, Post MJ, Quax PHA, Rabinovich GA, Raica M, Randi AM, Ribatti D, Ruegg C, Schlingemann RO, Schulte-Merker S, Smith LEH, Song JW, Stacker SA, Stalin J, Stratman AN, Van de Velde M, van Hinsbergh VWM, Vermeulen PB, Waltenberger J, Weinstein BM, Xin H, Yetkin-Arik B, Yla-Herttuala S, Yoder MC, Griffioen AW. Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis. 2018;21(3):425- 532. Doi: 10.1007/s10456-018-9613-x.

99. Leo F, Krenz T, Wolff G, Weidenbach M, Heiss C, Kelm M, Isakson B, Cortese-Krott MM. Assessment of tissue perfusion and vascular function in mice by scanning laser Doppler perfusion imaging. Biochem Pharmacol. 2020; 176:113893. Doi: 10.1016/j.bcp.2020.113893.

100. Rigden JD, Gordon EI. The granularity of scattered optical maser light. Proc IRE. 1962;(50):2367-2368.

101. Stern MD. In vivo evaluation of microcirculation by coherent light scattering. Nature. 1975;(254):56-58.

102. Briers JD. Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging. Physiol Meas. 2001;22(4):R35-R66. Doi: 10.1088/0967-3334/22/4/201.

103. Forrester KR, Tulip J, Leonard C, Stewart C, Bray RC. A laser speckle imaging technique for measuring tissue perfusion. IEEE Transactions Biomed Eng. 2004;51(11):2074-2084. Doi: 10.1109/TBME.2004.834259.

104. Serov A, Steinacher B, Lasser T. Full-field laser Doppler perfusion imaging and monitoring with an intelligent CMOS camera. Opt Express. 2005;13(10):3681-3689. Doi: 10.1364/opex.13.003681.

105. Skedina MA, Kovaleva AA, Nosovskij AM. The analysis of blood flow indicators in the microvascular bed of the human skin and their relationship with central hemodynamic parameters. Regional blood circulation and microcirculation. 2020;19(4):76-86. (In Russ.). Doi: 10.24884/1682-6655-2020-19-4-76-86.

106. Babaei S, Dai B, Abbey CK, Ambreen Y, Dobrucki WL, Insana MF. Monitoring Muscle Perfusion in Rodents During Short-Term Ischemia Using Power Doppler Ultrasound. Ultrasound Med Biol. 2023;49(6):1465-1475. Doi: 10.1016/j.ultrasmedbio.2023.02.013.

107. Aghabaglou F, Ainechi A, Abramson H, Curry E, Kaovasia TP, Kamal S, Acord M, Mahapatra S, Pustavoi tau A, Smith B, Azadi J, Son JK, Suk I, Theodore N, Tyler BM, Manbachi A. Ultrasound monitoring of microcirculation: An original study from the laboratory bench to the clinic. Microcirculation. 2022;29(6-7):e12770. Doi: 10.1111/micc.12770.

108. Jaguś D, Skrzypek E, Migda B, Woźniak W, Mlosek RK. Usefulness of Doppler sonography in aesthetic medicine. J Ultrason. 2021;20(83):e268-e272. Doi: 10.15557/JoU.2020.0047.

109. Baribeau Y, Sharkey A, Chaudhary O, Krumm S, Fatima H, Mahmood F, Matyal R. Handheld Point-of-Care Ultrasound Probes: The New Generation of POCUS. J Cardiothorac Vasc Anesth. 2020;34(11):3139-3145. Doi: 10.1053/j. jvca.2020.07.004.

110. Wang C, Li X, Hu H, Zhang L, Huang Z, Lin M, Zhang Z, Yin Z, Huang B, Gong H, Bhaskaran S, Gu Y, Makihata M, Guo Y, Lei Y, Chen Y, Wang C, Li Y, Zhang T, Chen Z, Pisano AP, Zhang L, Zhou Q, Xu S. Monitoring of the central blood pressure waveform via a conformal ultrasonic device. Nat Biomed Eng. 2018;2(9):687-695. Doi: 10.1038/s41551-018-0287-x.

111. Errico C, Pierre J, Pezet S, Desailly Y, Lenkei Z, Couture O, Tanter M. Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging. Nature. 2015;527(7579):499-502. Doi: 10.1038/nature16066.

112. Christensen-Jeffries K, Couture O, Dayton PA, Eldar YC, Hynynen K, Kiessling F, O’Reilly M, Pinton GF, Schmitz G, Tang MX, Tanter M, van Sloun RJG. Super-resolution Ultrasound Imaging. Ultrasound Med Biol. 2020;46(4):865-891. Doi: 10.1016/j.ultrasmedbio.2019.11.013.

113. Weissgerber TL, Garcia-Valencia O, Milic NM, Codsi E, Cubro H, Nath MC, White WM, Nath KA, Garovic VD. Early Onset Preeclampsia Is Associated With Glycocalyx Degradation and Reduced Microvascular Perfusion. J Am Heart Assoc. 2019;8(4):e010647. Doi: 10.1161/JAHA.118.010647.

114. Sha M, Griffin M, Denton CP, Butler PE. Sidestream Dark Field (SDF) imaging of oral microcirculation in the assessment of systemic sclerosis. Microvasc Res. 2019; 126:103890. Doi: 10.1016/j.mvr.2019.103890.

115. Rovas A, Sackarnd J, Rossaint J, Kampmeier S, Pavenstädt H, Vink H, Kümpers P. Identification of novel sublingual parameters to analyze and diagnose microvascular dysfunction in sepsis: the NOSTRADAMUS study. Crit Care. 2021;25(1):112. Doi: 10.1186/s13054-021-03520-w.

116. Kheilo TS, Danilogorskaya YuA, Gladysheva EG, Djavatkhanova MR, Samorukova IV, Snytko SV. Experience of using the domestic OKO capillaroscope for morphofunctional parameters of bulbar conjunctiva microvasculare assessment in various diseases. Therapy. 2022;8(6):120-126. (In Russ.). Doi: 10.18565/therapy.2022.6.120-126.

117. Daly SM, Leahy MJ. ‘Go with the flow‘: a review of methods and advancements in blood flow imaging. J Biophotonics. 2013;6(3):217-255. Doi: 10.1002/jbio.201200071.

118. Nwaneshiudu A, Kuschal C, Sakamoto FH, Anderson RR, Schwarzenberger K, Young RC. Introduction to confocal microscopy. J Invest Dermatol. 2012;132(12):e3. Doi: 10.1038/jid.2012.429.

119. Zhang L, Ding Y, Chen X, Xiang D, Shi F, Chen Y, Yan S, Zhang X, Tian J, Sivaprasad S, Du Y, Yang Z, Tian B. In vivo fluorescence molecular imaging of the vascular endothelial growth factor in rats with early diabetic retinopathy. Biomed Opt Express. 2021;12(11):7185-7198. Doi: 10.1364/BOE.439446.

120. Peter TC. So Two-photon Fluorescence Light Microscopy. In book: Encyclopedia of Life Sciences. Nature Publishing Group, 2002:1-5.

121. Sanderson MJ, Smith I, Parker I, Bootman MD. Fluorescence microscopy. Cold Spring Harb Protoc. 2014; 2014(10):pdb.top071795. Doi: 10.1101/pdb.top071795.

122. Lee M, Kannan S, Muniraj G, Rosa V, Lu WF, Fuh JYH, Sriram G, Cao T. Two-Photon Fluorescence Microscopy and Applications in Angiogenesis and Related Molecular Events. Tissue Eng Part B Rev. 2022;28(4):926-937. Doi: 10.1089/ten.TEB.2021.0140.

123. O’Doherty J, Henricson J, Anderson C, Leahy MJ, Nilsson GE, Sjöberg F. Sub-epidermal imaging using polarized light spectroscopy for assessment of skin microcirculation. Skin Res Technol. 2007;13(4):472-484. Doi: 10.1111/j.1600-0846.2007.00253.x.

124. Nothdurft R, Yao G. Expression of target optical properties in subsurface polarization-gated imaging. Opt Express. 2005;13(11):4185-4195. Doi: 10.1364/opex.13.004185.

125. Demos SG, Papadopoulos AJ, Savage H, Heerdt AS, Schantz S, Alfano RR. Polarization filter for biomedical tissue optical imaging. Photochem Photobiol. 1997;66(6):821-825. Doi: 10.1111/j.1751-1097.1997.tb03231.x.

126. Yao G. Differential optical polarization imaging in turbid media with different embedded objects. Opt Commun. 2004;241(4-6):255-261. Doi: 10.1016/J.OPTCOM.2004.07.026.

127. Papayan GV, Akopov AL, Antonyan PA, Ilin AA, Petrishchev NN. Infrared fluorescence lymphography in experimental and clinical practice. Regional blood circulation and microcirculation. 2018;17(2):84-91. (In Russ.). Doi: 10.24884/1682-6655-2018-17-2-84-91.

128. Leitgeb R, Placzek F, Rank E, Krainz L, Haindl R, Li Q, Liu M, Andreana M, Unterhuber A, Schmoll T, Drexler W. Enhanced medical diagnosis for dOCTors: a perspective of optical coherence tomography. J Biomed Opt. 2021; 26(10):100601. Doi: 10.1117/1.JBO.26.10.100601.

129. Bhende M, Shetty S, Parthasarathy MK, Ramya S. Optical coherence tomography: A guide to interpretation of common macular diseases. Indian J Ophthalmol. 2018; 66(1):20-35. Doi: 10.4103/ijo.IJO_902_17. Erratum in: Indian J Ophthalmol. 2018;66(3):485. Doi: 10.4103/0301-4738.226132.

130. Yao J, Wang LV. Photoacoustic microscopy. Laser Photon Rev. 2013;7(5):758-778. Doi: 10.1002/lpor.201200060.

131. Liu C, Wang L. Functional photoacoustic microscopy of hemodynamics: a review. Biomed Eng Lett. 2022;12(2):97- 124. Doi: 10.1007/s13534-022-00220-4.

132. Liu C, Chen J, Zhang Y, Zhu J, Wang L. Five-wavelength optical resolution photoacoustic microscopy of blood and lymphatic vessels. Adv Photon. 2021;3(1):1-10. Doi: 10.1117/1.AP.3.1.016002.


Review

For citations:


Vlasova Т.I., Vlasova T.D. Current methods for microvascular blood flow research. Regional blood circulation and microcirculation. 2024;23(4):5-21. (In Russ.) https://doi.org/10.24884/1682-6655-2024-23-4-5-21

Views: 514


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-6655 (Print)
ISSN 2712-9756 (Online)