Application of high-frequency Doppler ultrasound for comparative assessment of the response of the microcirculatory bloodstream to artificial ventilation and therapy with an oxygen-helium mixture in patients with severe viral pneumonia caused by COVID-19
https://doi.org/10.24884/1682-6655-2024-23-4-46-55
Abstract
The aim. To perform a comparative analysis of microcirculatory bed (MCB) response in patients with viral pneumonia (COVID-19), severe course, aggravated by arterial hypertension on artificial lung ventilation (ALV) and thermal oxygen-helium mixture (OHM) therapy.
Materials and methods. 9 patients were on mask ALV and 13 received OHM therapy. The OHM therapy was performed at gas concentration: O2 – 30 %, He – 70 %; the OHM temperature at the heater output was +95 оС (patients received it with t= up to +65 оС). The blood flow parameters in the MCB were recorded by ultrasound dopplerograph, 20 MHz sensor on the nail shaft of the thumb.
Results. The study has shown that the blood flow parameters in MCB were variable in patients on ALV. The increase in the blood flow velocity in MCB was due to blood inflow through the arteriolar link as a result of high values of HR (up to 100 beats/min), which ranged 0.741 – 2.428 cm/s on different days of observation. The PI index was high – 1.332 , some days its value increased by 13.7–26.7 %. Capillary blood flow indicators were low and averaged 0.181 cm/s. After OHM therapy, the blood flow velocity increased in all links of MCB: in the arteriolar and capillary by 7 %, in the venular almost 3 times as compared to the primary study. The PI index decreased from 1.56 to 1.155, vascular tone RI from 0.87 to 0.714. The positive effect of OHM therapy was observed after 30 min, 60 min and on subsequent days of MCB monitoring.
About the Authors
M. A. SkedinaRussian Federation
Skedina Marina A. – Candidate (Ph. D.) of Medical Sciences, Leading Researcher
76a, shosse Horoshyovskoe, Moscow, 123007
A. A. Kovaleva
Russian Federation
Kovaleva Anna A. – Research Associate
76a, shosse Horoshyovskoe, Moscow, 123007
V. M. Manuylov
Russian Federation
Manuilov Vladimir M. – M. D., Prof., Chief Physician
35, Aviacionnaya str., Moscow Oblast, Pushkino town, 141206
References
1. Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS, Mehra MR, Schuepbach RA, Ruschitzka F, Moch H. Endothelial cell infection and endotheliitis in COVID-19. The Lancet. 2020;395(10234):1417-1418. Doi: 10.1016/S0140-6736(20)30937-5.
2. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Müller MA, Drosten C, Pöhlmann S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271- 280.e278. Doi: 10.1016/j.cell.2020.02.052.
3. Pons S, Fodil S, Azoulay E, Zafrani L. The vascular endothelium: the cornerstone of organ dysfunction in severe SARS-CoV-2 infection. Crit Care. 2020;24(1):353. Doi: 10.1186/s13054-020-03062-7.
4. Teuwen LA, Geldhof V, Pasut A, Carmeliet P. COVID-19: the vasculature unleashed. Nat Rev Immunol. 2020;20(7):389- 391. Doi: 10.1038/s41577-020-0343-0.
5. Cui S, Chen S, Li X, Liu S, Wang F. Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. J Thrombosis Haemostasis. 2020;18(6):1421- 1424. Doi: 10.1111/jth.14830.
6. Xu J, Wang L, Zhao L, Li F, Liu Ji, Zhang L, Li Q, Gu J, Liang S, Zhao Q, Liu J. Risk assessment of venous thromboembolism and bleeding in COVID-19 patients. Res Square. Preprint. Doi: 10.21203/rs.3.rs-18340/v1.
7. Vremenny`e metodicheskie rekomendatsii. Profilaktika, diagnostika i lechenie novoj koronavirusnoj infekcii (COVID-19). Prilozhenie 8.1, 8.2.-2. Versiya 10 (08.02.2021). URL: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/054/588/original/%D0%92%D1%80%D0%B5%D0%BC%D0%B5%D0%BD%D0%BD%D1%8B%D0%B5_%D0%9C%D0%A0_COVID19_%28v.10%29-08.02.2021_%281%29.pdf (accessed: 01.08.2024). (in Russ.).
8. Gromov AA, Kruchinina MV, Rabko AV. COVID-19: therapy possibilities in reserve. Russ Med J. 2020;9:2-6. (In Russ.).
9. Tarnawski AS, Ahluwalia A. Endothelial cells and blood vessels are major targets for COVID-19-induced tissue injury and spreading to various organs. World J Gastroenterol. 2022;28(3):275. Doi: 10.3748/wjg.v28.i3.275.
10. Shogenova LV, Varfolomeev SD, Bykov VI, Tsybenova SB, Ryabokon’ AM, Zhuravel SV, Utkina II, Gavrilov PV, Petrikov SS, Chuchalin AG, Panin AA. Effect of thermal helium-oxygen mixture on viral load in COVID-19. Pulmonologiya. 2020;30(5):533-543. (In Russ.). Doi: 10.18093/0869-0189-2020-30-5-533-543.
11. Gluck EH, Onorato DJ, Castriotta R. Heliumoxygen mixtures in intubated patients with status asthmaticus and respiratory acidosis. Chest. 1990;98:693-698. Doi: 10.1378/chest.98.3.693.
12. Shogenova LV, Godyaev MY, Tretyakov AV, Kozyr AS, Kononikhin AS, Shogenova LV, Chuchalin AG. Effect of t-НеО2 on Central hemodynamics and oxygen transport in patients with COPD exacerbation and acute respiratory failure. Eur Respir J. 2019;54:PA2290. Doi: 10.1183/13993003.congress-2019.PA2290.
13. Jolliet P, Watremez C, Roeseler J, Ngengiyumva JC, de Kock M, Clerbaux T, Tassaux D, Reynaert M, Detry B, Liistro G. Comparative effects of helium-oxygen and external positive endexpiratory pressure on respiratory mechanics, gas exchange, and ventilation-perfusion relationships in mechanically ventilated patients with chronic obstructive pulmonary disease. Intensive Care Med. 2003;29:1442-1450. Doi: 10.1007/s00134-003-1864-2.
14. Beurskens CJ, Wösten-van Asperen RM, Preckel B, Juffermans NP. The Potential of Heliox as a Therapy for Acute Respiratory Distress Syndrome in Adults and Children: A Descriptive Review. Respiration. 2015;89:166-174. Doi: 10.1159/000369472.
15. Pavlov BN, Plaskin SE, Boytsov SA, Cherkashin D. Methods of treatment with heated oxygen-helium mixtures of acute inflammatory and broncho-obstructive pulmonary diseases using the “Ingalit” apparatus. Approved by the FU MBEP under the Ministry of Health of the Russian Federation on January 26, 2001. Moscow, 2001. URL: https://www.ingalit.ru/ (accessed: 20.08.2024). (in Russ.).
16. Shogenova LV. Effects of using heliox as a working gas during inhalation of β2-agonists using a nebulizer in patients with achievements of BA. Effektivnaya farmakoterapiya. 2010;(27):34-40. (In Russ.).
17. Petrishchev NN, Khalepo OV, Vavilenkova YA, Vlasov TD. COVID-19 and vascular disorders (literature review). Regional blood circulation and microcirculation. 2020;19(3):90-98. (In Russ.). Doi: 10.24884/1682-6655-2020-19-3-90-98.
18. Rossi M, Bradbury A, Magagna A, Pesce M, Taddei S and Stefanovska A. Investigation of skin vasoreactivity and blood flow oscillations in hypertensive patients: effect of short-term antihypertensive treatment. J Hypertension. 2011;29(8):1569- 1576. Doi: 10.1097/HJH.0b013e328348b653.
19. Holowatz LA, Thompson-Torgerson CS, Kenney WL: The human cutaneous circulation as a model of generalized microvascular function. J Appl Physiol. 2008;105(1):370-372. Doi: 10.1152/japplphysiol.00858.2007.
20. Roustit M, Cracowski JL. Non-invasive assessment of skin microvascular function in humans: an insight into methods. Microcirculation. 2012;19(1):47-64. Doi: 10.1111/j.1549-8719.2011.00129.x.
21. Lenasi H, Potočnik N, Petrishchev N, Papp M, Egorkina A, Girina M, Skedina M, Kovaleva A. The measurement of cutaneous blood flow in healthy volunteers subjected to physical exercise with ultrasound Doppler imaging and laser Doppler flowmetry. Clin Hemorheol Microcirc. 2017;65(4):373- 381. Doi: 10.3233/CH-16204.
22. Petrishchev NN, Vasina EYu, Korneev NV, Skedina MA, Girina MB. The method for determining the reactivity of the microvasculature vessels and the vasomotor function of the endothelium using high-frequency dopplerography. Saint-Petersburg, SP-Minimax, 2009:20. (In Russ.).
23. Skedina MA, Kovaleva AA, Nosovsky AM. The analysis of blood flow indicators in the microvascular bed of the human skin and their relationship with central hemodynamic parameters. Regional blood circulation and microcirculation. 2020;19(4):76-86. (In Russ.). Doi: 10.24884/1682-6655-2020-19-4-76-86.
24. Guan WJ, Ni ZY, Hu Y. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020; 382(18):1708-1720. Doi: 10.1056/Nejmoa2002032.
25. Fedorovich AA. The functional state of regulatory mechanisms of the microcirculatory blood flow in normal conditions and in arterial hypertension according to laser Doppler flowmetry. Regional blood circulation and microcirculation. 2010;9(1):49- 60. (In Russ.). Doi: 10.24884/1682-6655-2010-9-1-49-60.
26. Lippi G, Wong J, Henry BM. Hypertension in patients with coronavirus disease 2019 (COVID-19): a pooled analysis. Pol Arch Intern Med. 2020;(130):304-309. Doi: 10.20452/pamw.15272.
27. Serne EH, Gans ROB, terMaaten JC, Tangelder GJ, Donker AJM, Stehouwer CDA. Impaired skin capillary recruitment in essential hypertension is caused by both functional and structural capillary rarefaction. Hypertension. 2001; 38(2):238-242. Doi: 10.1161/01.hyp.38.2.238.
28. Shore AC. Capillaroscopy and the measurement of capillary pressure. Br J Clin Pharmacol. 2000;50(6):501-503. Doi: 10.1046/j.1365-2125.2000.00278.x.
29. Tehrani S, Gille-Johnson P. Microvascular dysfunction in patients with critical COVID-19, a pilot study. Shock (Augusta, Ga.). 2021;56(6):964-968. Doi: 10.1097/SHK.0000000000001803.
30. Rovas A, Osiaevi I, Buscher K, Sackarnd J, Tepasse PR, Fobker M, Kuhn J, Braune S, Gobel U, Tholking G, Groschel A, Pavenstadt H, Vink H, Kumpers P. Microvascular dysfunction in COVID-19: the MYSTIC study. Angiogenesis. 2021; 24(1):145-157. Doi: 10.1007/s10456-020-09753-7.
31. Grishin VI, Logunov AT, Pavlov NB, Ilinskaya EA, Berzin IA, Belova AB. Oxygen-helium breathing mixtures. Moscow, Neptun XXI vek, 2019:136. (In Russ.).
32. Avdeev SN, Chuchalin AG, Belevskij AS. Protocol for the treatment of patients with acute and exacerbation of chronic respiratory failure with thermal heliox (t-He/O2). Moscow, Rossijskoe respiratornoe obshchestvo, 2018:48. (in Russ.).
33. Vcherashniy DB, Erofeev NP, Novoseltsev SV. The capabilities and limitations of the laser Doppler flowmetry method. Belgorod State University Sci Bull: Medicine, Pharmacy. 2014;24(195):35-41. (In Russ.).
34. Vongsavan N, Matthews B. Some aspects of the use of laser Doppler flow meters for recordings tissue blood flow. Exp Physiol. 1993;78(1):1-14. Doi: 10.1113/expphysiol.1993.sp003664.
Review
For citations:
Skedina M.A., Kovaleva A.A., Manuylov V.M. Application of high-frequency Doppler ultrasound for comparative assessment of the response of the microcirculatory bloodstream to artificial ventilation and therapy with an oxygen-helium mixture in patients with severe viral pneumonia caused by COVID-19. Regional blood circulation and microcirculation. 2024;23(4):46-55. (In Russ.) https://doi.org/10.24884/1682-6655-2024-23-4-46-55