Assessment of blood microcirculation and oxidative metabolism of biological tissue in the limb at changing its position by methods of laser Doppler flowmetry and fluorescence spectroscopy
https://doi.org/10.24884/1682-6655-2024-23-4-56-66
Abstract
Introduction. Diagnostics of blood circulation in skin microvessels and oxidative metabolism of biological tissue allows predicting the presence of microcirculatory disorders in the body, assessing their severity and monitoring therapy. The use of a functional test related to the change in the position of the entire human body in space is a well-known method for studying the functions of the autonomic nervous system and diagnosing cardiovascular diseases.
Purpose. To study a set of parameters characterizing oxidative metabolism and dynamics of blood microcirculation in the finger during a sequence of tests with the change in the position of the upper limb using fluorescence spectroscopy and laser Doppler flowmetry.
Materials and Methods. The study was conducted on a group of volunteers consisting of 10 people aged 21–40 years. The LAZMA PF device (Russia), implementing the methods of laser Doppler flowmetry and fluorescence spectroscopy, was placed on the pad of the middle finger. Each volunteer’s microcirculation parameters were measured in two arm positions: «at heart level» and with the limb vertically raised in the «up» position. Blood flow oscillations were continuously measured during all stages: three times in two positions.
Results. A change in the limb position from the «at heart level» to «up» state leads to a decrease in the average values of microcirculation indices by 12 perfusion units (p. u.) and oxidative metabolism by 7 relative units (r. u.) with a simultaneous increase in the NADH coenzyme by 3 r. u., i.e. there is a unidirectional change in the microcirculation and oxidative metabolism parameters and an oppositely directed change of the NADH coenzyme values. According to the results of NADH coenzyme measurements, based on the analysis of statistical data, a statistically significant difference was found between the «at heart level» and «up» arm positions. This difference was not revealed only in the first cycle of the study, the reliability of p was greater than 0.05, between the arm positions 1–2, when the arm was «at heart level» and then raised «up». It was also found that with each new measurement cycle, the probability value of p for NADH indicators steadily decreased with a change in the arm position, at a significance level of p<0.05. The probability value of p became statistically significant starting from the second cycle of the study. Based on the results of oxidative metabolism indicator measurements, it was found that the probability value of p had a statistical significance of p<0.05 at each change of arm position in each cycle.
Conclusion. The studies have shown that in order to obtain reliable information about the results of the limb position test, it is not enough to perform one-time measurements of the microcirculation indicator or the oxidative metabolism of biological tissue using laser Doppler flowmetry. The position of the limb and its change leads to significant changes in microcirculation and oxidative metabolism indicators, which should be taken into account when conducting medical and physiological studies
About the Authors
An. V. SkripalRussian Federation
Skripal Anatoly V. – Doctor in Physics and Mathematics, Professor, Head, Department of Medical Physics
83, Astrakhanskaya str., Saratov, 410012
D. G. Verkhov
Russian Federation
Verkhov Dmitriy G. – Engineer, Department of Medical Physics
83, Astrakhanskaya str., Saratov, 410012
Farkad Al-Badri
Russian Federation
Farkad Al-Badri – Postgraduate Student, Department of Medical Physics
83, Astrakhanskaya str., Saratov, 410012
K. V. Mashkov
Russian Federation
Mashkov Konstantin V. – Postgraduate Student, Department of Medical Physics
83, Astrakhanskaya str., Saratov, 410012
A. D. Usanov
Russian Federation
Usanov Andrey D. – Candidate (PhD) of Physics and Mathematics, Associate Professor, Department of Medical Physics
83, Astrakhanskaya str., Saratov, 410012
A. A. Sagaidachny
Russian Federation
Sagaidachnyi Andrey A. – Candidate (PhD) of Physics and Mathematics, Associate Professor, Department of Medical Physics
83, Astrakhanskaya str., Saratov, 410012
I. S. Zaletov
Russian Federation
Zaletov Ivan S. – Assistant, Department of Medical Physics
83, Astrakhanskaya str., Saratov, 410012
V. A. Klochkov
Russian Federation
Klochkov Viktor A. – Doctor of Medicine, Professor, Department of Propaedeutic of Internal Diseases
112, Bolshaya Kazachya str., Saratov, 410012
References
1. Tikhonova IV, Grinevich AA, Guseva IE, Tankanag AV. Effect of orthostasis on the regulation of skin blood flow in upper and lower extremities in human. Microcirculation. 2021; 28(1). Doi: doi.org/10.1111/micc.12655.
2. Grebenyuk OV, Kataeva NG, Novikova NS, Svetlik MV. Heart rate variability under orthoclinostatic stress in patients with neuroreflective syncopal conditions. Bull Siberian Med. 2010;9(4):44-48. (In Russ.). Doi: 10.20538/1682-0363-2010-4-44-48.
3. Zaletov IS, Sagaidachny AA, Skripal AV, Klochkov VA, Maikov DI, Fomin AV. The relationship of the pulse wave shape in peripheral arteries recorded by impedance rheography and ultrasound Dopplerography. Proceedings of the Saratov University. A new series. Physics Series. 2023;23(1):24-36. (In Russ.). Doi: 10.18500/1817-3020-2023-23-1-24-36.
4. Silva H, Ferreira HA, da Silva HP, Monteiro Rodrigues L. The venoarteriolar reflex significantly reduces contralateral perfusion as part of the lower limb circulatory homeostasis in vivo. Front Physiol. 2018;9:383929. Doi: 10.3389/fphys.2018.01123.
5. Allen J. Photoplethysmography and its application in clinical physiological measurement. Physiol Meas. 2007; 28(3):1–39. Doi: 10.1088/0967-3334/28/3/r01.
6. Skedina MA, Kovaleva AA, Degterenkova NV. Investigation of cerebral hemodynamics and peripheral microcirculation during a passive postural orthostatic test. Regional blood circulation and microcirculation. 2018;17(3):115-119. (In Russ.). Doi: 10.24884/1682-6655-2018-17-3-115-119.
7. Krupatkin AI, Sidorov VV. Laser Doppler fluorometry of blood microcirculation. Moscow, Meditsina, 2005:254. (in Russ.).
8. Fedorovich AA, Loktionova YI, Zharkikh EV, Mikhailova MA, Popova JA, Suvorov AV, Zherebtsov EA. Body position affects capillary blood flow regulation measured with wearable blood flow sensors. Diagnostics. 2021;11(3):436. Doi: 10.3390/diagnostics11030436.
9. Skripal AnV, Al-Badri F, Mashkov KV, Usanov AD, Averyanov AP. Laser flowmetry of microcirculation of the finger of the hand depending on the external temperature and position of the limb. Regional blood circulation and microcirculation. 2023;22(4):35-41. (In Russ.). Doi: 10.24884/1682-6655-2023-22-4-35-41.
10. Jonasson H, Fredriksson I, Pettersson A, Larsson M, Strömberg T. Oxygen saturation, red blood cell tissue fraction and speed resolved perfusion – a new optical method for microcirculatory assessment. Microvascular research. 2015; 102:70-77. Doi: 10.1016/j.mvr.2015.08.006.
11. Glazkova PA, Kulikov DA, Glazkov AA, Terpigorev SA, Rogatkin DA, Shekhyan GG, Paleev FN. Reactivity of skin microcirculation as a biomarker of cardiovascular events. Pilot study. Clin Hemorheol Microcirc. 2021;78(3):247-257. Doi: 10.3233/ch-201016.
12. Sorelli M, Stoyneva Z, Mizeva I, Bocchi L. Spatial heterogeneity in the time and frequency properties of skin perfusion. Physiol Meas. 2017;38(5):860. Doi: 10.1088/1361-6579/aa5909.
13. Papayan GV, Berezin VB, Petrishchev NN, Galagudza MM. A spectrometer for fluorescentreflective biomedical research. Optical J. 2013;80(1):56-67. (In Russ.). Doi: 10.1364/JOT.80.000040.
14. Marcinek A, Katarzynska J, Sieron L, Skokowski R, Zielinski J, Gebicki J. Non-invasive assessment of vascular circulation based on Flow Mediated Skin Fluorescence (FMSF). Biology. 2023;12(3):385. Doi: 10.3390/biology12030385.
15. Dremin VV, Sidorov VV, Krupatkin AI, Galstyan GR, Novikova IN, Zherebtsova AI, Rafailov EU. The blood perfusion and NADH/FAD content combined analysis in patients with diabetes foot. In Advanced Biomedical and Clinical Diagnostic and Surgical Guidance Systems XIV. SPIE. 2016;9698:93-99. Doi: 10.1117/12.2212758.
16. Krupatkin AI, Sidorov VV. Functional diagnostics of mikrotsirkuljatornotissue systems: Fluctuations, information, nonlinearity : guide for doctors. Moscow, Librokom, 2013:496. (In Russ.).
17. Mizeva I, Frick P, Podtaev S. Relationship of oscillating and average components of laser Doppler flowmetry signal. J Biomed Opt. 2016;21(8):085002. Doi: 10.1117/1.jbo.21.8.085002.
18. Tankanag AV, Grinevich AA, Kirilina TV, Krasnikov GV, Piskunova GM, Chemeris NK. Wavelet phase coherence analysis of the skin blood flow oscillations in human. Microvasc Res. 2014;95:53-59. Doi: 10.1016/j.mvr.2014.07.003.
19. Eremeeva VA, Skripal AV, Dobdin SY, Klochkov VA. The method of thermal and cold testing in the diagnosis of blood flow using a laser Doppler flowmeter. In the collection: Methods of computer diagnostics in biology and medicine. Collection of articles of the All-Russian school seminar. Saratov, 2023:27-30. (In Russ.).
20. Katarzynska J, Lipinski Z, Cholewinski T, Piotrowski L, Dworzynski W, Urbaniak M, Gebicki J. Non-invasive evaluation of microcirculation and metabolic regulation using flow mediated skin fluorescence (FMSF): technical aspects and methodology. Rev Sci Instruments. 2019;90(10):104104. Doi: 10.1063/1.5092218.
21. Zharkikh EV, Dremin VV, Dunaev AV. Fluorescent Technology in the Assessment of Metabolic Disorders in Diabetes. In book: Biomedical Photonics for Diabetes Research. CRC Press, 2022:197-212. Doi: 10.1201/9781003112099-9.
22. Sidorov VV, Rybakov YL, Gukasov VM, Yevtushenko GS. Equipment for complex noninvasive diagnostics of the conditions of compartments of the microcirculatory and tissue system of human skin. Med Technol. 2021;(4):4-6. (In Russ.).
23. Sidorov VV, Rybakov YL, Gukasov VM, Yevtushenko GS. A system of local analyzers for noninvasive diagnostics of the general condition of microcirculatory compartments-the human skin tissue system. Med Technol. 2022;55(6):4. (In Russ.).
24. Loktionova YuI, Kozlov IO, Zherebtsov EA, Zherebtsova AI, Dunaev AV, Sidorov VV, Krupatkin AI. Assessment of dynamic changes in blood microcirculation and oxidative metabolism in patients with diabetes mellitus using temperature samples. 14th International Scientific Conference “Physics and Radioelectronics in Medicine and Ecology – FRAME’2020”, 1-3 July 2020. Suzdal-Vladimir, 2020:48-51. (In Russ.). Doi: 10.7868/S0131164617060029.
25. Usanov AD, Prigorodov MV, Kapralov SV, Skripal AV. The use of laser Doppler flowmetry and fluorescence spectroscopy to assess the state of the microcirculatory bed and the indicator of oxidative metabolism of patients during traumatic operations. In the collection: Methods of computer diagnostics in biology and medicine. Collection of articles of the All-Russian school seminar. Saratov, 2023:52-54. (In Russ.).
26. Mkrtumyan AM,Zvenigorodskaya LA, Shishkin MV. Investigation of microcirculation and tissue metabolism as early diagnostic criteria for the risk of developing diabetic foot. Ther. Archive. 2022;94(8):957-962. (In Russ.). Doi: 10.26442/00403660.2022.08.201789.
27. Zherebtsov EA, Zharkikh EV, Loktionova YI, Zhereb tsova AI, Sidorov VV, Rafailov EU, Dunaev AV. Wireless dynamic light scattering sensors detect microvascular changes associated with ageing and diabetes. IEEE Trans Biomed Eng. 2023;70(11):3073-3081. Doi: 10.1109/TBME.2023.3275654.
28. Zharkikh EV, Loktionova YI, Fedorovich AA, Gorshkov AY, Dunaev AV. Assessment of blood microcirculation changes after COVID-19 using wearable laser Doppler flowmetry. Diagnostics. 2023;13(5):920. Doi: 10.3390/diagnostics13050920.
29. Frolov AV, Loktionova Yu I, Zharkikh E V, Sidorov V V, Krupatkin A I, Dunaev AV. Investigation of changes in skin microcirculation of blood during the performance of the hatha yoga breathing technique. Regional blood circulation and microcirculation. 2022; 20(4):33-44. (In Russ.). Doi: 10.24884/1682-6655-2021-20-4-33-44.
30. Zharkikh EV, Loktionova YI, Sidorov VV, Krupatkin AI, Masalygina GI,
31. Dunaev AV. Control of blood microcirculation parameters in therapy with alpha-lipoic acid in patients with diabetes mellitus. Human Physiol. 2022;48(4):456-464. Doi: 10.1134/s0362119722040156.
32. Zherebtsov EA, Zharkikh EV, Kozlov I, Zherebtsova AI, Loktionova YI, Chichkov NB, Rafailov IE, Sidorov VV, Sokolovski SG, Dunaev AV, Rafailov EU. Novel wearable VCSEL based sensors for multipoint measurements of blood perfusion. Dynamics Fluctuations Biomed Photonics XVI. SPIE. 2019;10877:38-41. Doi: 10.1117/12.2509578.
33. Lima NS, Tzen YT, Clifford PS. Spectral changes in skin blood flow during pressure manipulations or sympathetic stimulation. Exp Physiol. 2024;109(6):892-898. Doi: 10.1113/EP091706.
34. Ovadia-Blechman Z, Gritzman A, Shuvi M, Gavish B, Aharonson V, Rabin N. The response of peripheral microcirculation to gravity-induced changes. Clin Biomech. 2018;57:19- 25. Doi: 10.1016/j.clinbiomech.2018.06.005.
35. Sagaidachny AA. Occlusion test: methods of analysis, reaction mechanisms, application prospects. Regional blood circulation and microcirculation. 2018;17(3):5-22. (In Russ.). Doi: 10.24884/1682-6655-2018-17-3-5-22.
36. Hickey M, Phillips JP, Kyriacou PA. The effect of vascular changes on the photoplethysmographic signal at different hand elevations. Physiol Meas. 2015;36(3):425. Doi: 10.1088/0967-3334/36/3/425.
37. Nogami H, Iwasaki W, Abe T, Kimura Y, Onoe A, Higurashi E, Takeuchi S, Kido M, Furue M, Sawada R. Use of a simple arm-raising test with a portable laser Doppler blood flow meter to detect dehydration. J Eng Med. 2011; 225(4):411-419.
38. Levicheva EN, Kamenskaya OV, Loginova IYu, Klinkova AS, Bulatetskaya LM. Reserve capabilities of microcirculatory blood flow of peripheral tissues in circulatory hypoxia. Regional blood circulation and microcirculation. 2012;11(3):34-38. (In Russ.). Doi: 10.24884/1682-6655-2012-11-3-34-38.
39. Nizinski J, Filberek P, Sibrecht G, Krauze T, Zielinski J, Piskorski J, Wykretowicz A, Guzik P. Non invasive in vivo human model of post ischaemic skin preconditioning by measurement of flow mediated 460 nm autofluorescence. Brit J Clin Pharmacol. 2021;87(11):4283-4292. Doi: 10.1111/bcp.14845.
40. Balu M, Mazhar A, Hayakawa CK, Mittal R, Krasieva TB, König K, Venugopalan V, Tromberg BJ. In vivo multiphoton NADH fluorescence reveals depth-dependent keratinocyte metabolism in human skin. Biophys J. 2013;104(1):258- 267. Doi: 10.1016/j.bpj.2012.11.3809.
41. Piotrowski L, Urbaniak M, Jedrzejczak B, Marcinek A, Gebicki J. Note: Flow mediated skin fluorescence – A novel technique for evaluation of cutaneous microcirculation. Rev Sci Instruments. 2016;87(3):036111. Doi: 10.1063/1.4945044.
42. Hellmann M, Tarnawska M, Dudziak M, Dorniak K, Roustit M, Cracowski JL. Reproducibility of flow mediated skin fluorescence to assess microvascular function. Microvasc Res. 2017;113:60-64. Doi: 10.1016/j.mvr.2017.05.004.
43. Niziński J, Kamieniarz L, Filberek P, Sibrecht G, Guzik P. Monitoring the skin NADH changes during ischaemia and reperfusion in humans. J Med Sci. 2020;89(1):e405-e405. Doi: 10.20883/medical.405.
44. Rabinowitz JD, Enerbäck S. Lactate: the ugly duckling of energy metabolism. Nat Metab. 2020;2(7):566-571. Doi: 10.1038/s42255-020-0243-4.
45. Adeva-Andany M, López-Ojén M, Funcasta-Calderón R, Ameneiros-Rodríguez E, Donapetry-García C, Vila-Altesor M, Rodríguez-Seijas J. Comprehensive review on lactate metabolism in human health. Mitochondrion. 2014;17:76-100. Doi: 10.1016/j.mito.2014.05.007.
46. Dashty M. A quick look at biochemistry: carbohydrate metabolism. Clin Biochem. 2013;46(15):1339-1352. Doi: 10.1016/j.clinbiochem.2013.04.027.
47. Luengo A, Li Z, Gui DY, Sullivan LB, Zagorulya M, Do BT, Ferreira R, Naamati A, Ali A, Lewis CA, Thomas CJ, Spranger S, Matheson NJ, Vander Heiden MG. Increased demand for NAD+ relative to ATP drives aerobic glycolysis. Mol cell. 2021;81(4):691-707. Doi: 10.1016/j.molcel.2020.12.012.
48. Lukina MM, Shirmanova MV, Sergeeva TF, Zagainova EV. Metabolic imaging in the study of oncological processes (review). Modern Technol Med. 2016;8(4):113-128. (In Russ.). Doi: 10.17691/stm2016.8.4.16.
49. Wengrowski AM, Kuzmiak-Glancy S, Jaimes R, Kay MW. NADH changes during hypoxia, ischemia, and increased work differ between isolated heart preparations. Am J Physiol-Heart Circ Physiol. 2014;306(4):H529-H537. Doi: 10.1152/ajpheart.00696.2013.
50. Dunaev A. Wearable devices for multimodal optical diagnostics of microcirculatory-tissue systems: application experience in the clinic and space. J Biomed Photon Eng. 2023;9(2):020201. Doi: 10.18287/JBPE23.09.020201.
Review
For citations:
Skripal A.V., Verkhov D.G., Al-Badri F., Mashkov K.V., Usanov A.D., Sagaidachny A.A., Zaletov I.S., Klochkov V.A. Assessment of blood microcirculation and oxidative metabolism of biological tissue in the limb at changing its position by methods of laser Doppler flowmetry and fluorescence spectroscopy. Regional blood circulation and microcirculation. 2024;23(4):56-66. (In Russ.) https://doi.org/10.24884/1682-6655-2024-23-4-56-66