Assessment of cutaneous blood microcirculation changes while performing hatha yoga inverted pose using a distributed system of wearable analyzers
https://doi.org/10.24884/1682-6655-2024-23-4-67-77
Abstract
Introduction. This study aimed to assess blood microcirculation changes in the skin of the forehead, cheeks and lower extremities before, during and after performing a yoga inverted pose, using wearable laser Doppler flowmetry analyzers in healthy volunteers.
Materials and methods. The study involved 25 volunteers, with an average age of 37 [35–44] years. Blood microcirculation changes were evaluated by laser Doppler flowmetry using six LAZMA PF wireless wearable devices, placed in pairs on the supraorbital artery regions of the forehead, cheeks and on the first toes of the feet, symmetrically on the right and left. A three-phase study protocol included a supine position before the inverted pose (6 minutes), the inverted pose (3 minutes), and a supine position after the inverted pose (6 minutes). Measurements included the index of microcirculation (Im), nutritive blood flow (Imn), the amplitude of endothelial (Ae), neurogenic (An), myogenic (Am), respiratory (Ar) and cardiac (Ac) oscillations for each investigated area.
Results. Transitioning from the supine position to the inverted pose increases the forehead Im by 21.7 %; when returning to the supine position, Im decreases but remains significantly above the baseline. Imn in the forehead area remains stable. Ae, An, Am and Ac before and after the inversion show no significant changes. Ar shows a statistically significant change while maintaining the median values. In the cheek area, when transitioning from the supine position to the inverted pose, there is a 35.6 % increase in Im, and upon returning to the supine position, Im continues to rise while Imn tends to increase. There is a significant increase in Ar (by 50 %) and Ac (by 42.9 %), as well as a tendency to increase Ae, An, Am. Im in the feet area decreases by 55.6 %, but after returning to the horizontal position, compared to the initial state, it increases by 27.4 % and Imn increases by 42.9 %. There is a statistically significant increase in Ae (by 28.6 %), Am (by 40 %), Ar (by 50 %) and Ac (by 50 %).
Conclusion. Findings revealed significant impacts of the inversion position on the blood microcirculation in all investigated areas. The index of microcirculation significantly increases after performing the inverted pose both in the skin of the forehead and cheeks. However, the respiratory and cardiac oscillation amplitudes increases only in the skin of the cheeks, without changing significantly or with a median shift in the forehead skin, which confirms the peculiarities of microcirculatory regulation in the supraorbital artery area. In the toe skin after performing the inverted position, the index of microcirculation and nutritive blood flow, as well as the amplitudes of myogenic, respiratory and cardiac oscillations of tissue perfusion increase significantly. We can assume that inverted yoga poses may be beneficial in clinical practice for rehabilitating individuals with lower extremity circulatory disorders.
About the Authors
S. A. ErmolaevaRussian Federation
Ermolaeva Sargylana A. – Researcher
30a, Nevsky pr., Saint Petersburg, 191186
Yu. I. Loktionova
Russian Federation
Loktionova Yulia I. – Postgraduate Student, Trainee Researcher
95, Komsomolskaya str., Orel, 302026
E. G. Dubasova
Russian Federation
Dubasova Ekaterina G. – Researcher
30a, Nevsky pr., Saint Petersburg, 191186
A. V. Dunaev
Russian Federation
Dunaev Andrey V. – Doctor of Technical Sciences (Dr. habil.), Associate Professor, Leading Researcher
95, Komsomolskaya str., Orel, 302026
A. V. Frolov
Russian Federation
Frolov Artem V. – Doctor of Functional Diagnostics, Rector
30a, Nevsky pr., Saint Petersburg, 191186
References
1. Frolov AV, Loktionova YuI, Zharkikh EV, Sidorov VV, Krupatkin AI, Dunaev AV. Investigation of changes in the skin blood microcirculation when performing the hatha yoga breathing technique. Regional blood circulation and microcirculation. 2021;20(4):33-44. (In Russ.). Doi: 10.24884/1682-6655-2021-20-4-33-44.
2. Frolov AV, Loktionova YuI, Zharkikh EV, Sidorov VV, Tankanag AV, Dunaev AV. The reaction of blood microcirculation in the skin of various parts of the body after performing yoga breathing exercises. Regional blood circulation and microcirculation. 2023;22(1):72-84. (In Russ.). Doi: 10.24884/1682-6655-2023-22-1-72-84.
3. Caille V, Jabot J, Belliard G, Charron C, Jardin F, Vieillard-Baron A. Hemodynamic effects of passive leg raising: an echocardiographic study in patients with shock. Intensive Care Med. 2008;34(7):1239-1245. Doi: 10.1007/s00134-008-1067-y.
4. Boulain T, Achard JM, Teboul JL, Richard C, Perrotin D, Ginies G. Changes in BP induced by passive leg raising predict response to fluid loading in critically ill patients. Chest. 2002;121(4):1245-1252. Doi: 10.1378/chest.121.4.1245.
5. Lim TW, Kim HJ, Lee JM, Kim JH, Hong DM, Jeon Y, Roh YJ, Lim YJ, Bahk JH. The head-down tilt position decreases vasopressor requirement during hypotension following induction of anaesthesia in patients undergoing elective coronary artery bypass graft and valvular heart surgeries. Eur J Anaesthesiol. 2011;28(1):45-50. Doi: 10.1097/EJA.0b013e3283408a0f.
6. Rucinkski TJ, Hooker DN, Prentice WE, Shields EW, Cote-Murray DJ. The effects of intermittent compression on edema in postacute ankle sprains. J Orthop Sports Phys Ther. 1991;14(2):65-69. Doi: 10.2519/jospt.1991.14.2.65.
7. Tsang KK, Hertel J, Denegar CR. Volume decreases after elevation and intermittent compression of postacute ankle sprains are negated by gravity-dependent positioning. J Athl Train. 2003;38(4):320-324.
8. Li B, Wang G, Wang Y, Bai L. Effect of two limb positions on venous hemodynamics and hidden blood loss following total knee arthroplasty. J Knee Surg. 2017;30(1):70-74. Doi: 10.1055/s-0036-1579787.
9. Mendelow AD, Gregson BA, Mitchell P, Schofield I, Prasad M, Wynne-Jones G, Kamat A, Patterson M, Rowell L, Hargreaves G. Lumbar disc disease: the effect of inversion on clinical symptoms and a comparison of the rate of surgery after inversion therapy with the rate of surgery in neurosurgery controls. J Phys Ther Sci. 2021;33(11):801-808. Doi: 10.1589/jpts.33.801.
10. Prasad KS, Gregson BA, Hargreaves G, Byrnes T, Winburn P, Mendelow AD. Inversion therapy in patients with pure single level lumbar discogenic disease: a pilot randomized trial. Disabil Rehabil. 2012;34(17):1473-1480. Doi: 10.3109/09638288.2011.647231.
11. Kassay A, Soliman MAR, Jhawar BS. Recommendations for inversion table therapy. Disabil Rehabil. 2023;45(22):3779- 3782. Doi: 10.1080/09638288.2022.2133174.
12. Kondrashova T, Makar M, Proctor C, Bridgmon KA, Pazdernik V. Dynamic assessment of cerebral blood flow and intracranial pressure during inversion table tilt using ultrasonography. J Neurol Sci. 2019;404:150-156. Doi: 10.1016/j.jns.2019.07.033.
13. Salomi S, Kiranmayi P, Pentakota V, Vijayalakshmi P. Impact of Sarvangasana and Uttanpadasana on Hemodynamic parameters. Research J Pharm Tech. 2022;15(7):3029-3033. Doi: 10.52711/0974-360X.2022.00506.
14. Andre L. 47 Compelling Yoga Statistics: 2021 Data on Industry Growth & Effects on Health. URL: https://financesonline.com/yoga-statistics/ (accessed: 22.07.2024).
15. Jeter PE, Slutsky J, Singh N, Khalsa SB. Yoga as a therapeutic intervention: a bibliometric analysis of published research studies from 1967 to 2013. J Altern Complement Med. 2015;21(10):586-592. Doi: 10.1089/acm.2015.0057.
16. Innes KE, Selfe TK. Yoga for adults with type 2 diabetes: a systematic review of controlled trials. J Diabetes Res. 2016;2016:6979370. Doi: 10.1155/2016/6979370.
17. Dutta A, Mooventhan A, Nivethitha L. Yoga as adjunct therapy for chronic heart failure: a systematic review and meta-analysis of randomized controlled trials. Avicenna J Med. 2023;13(3):151-162. Doi: 10.1055/s-0043-1774738.
18. de Orleans Casagrande P, Coimbra DR, de Souza LC, Andrade A. Effects of yoga on depressive symptoms, anxiety, sleep quality, and mood in patients with rheumatic diseases: Systematic review and meta-analysis. PMR. 2023;15(7):899- 915. Doi: 10.1002/pmrj.12867.
19. Rossi M, Carpi A, Galetta F, Franzoni F, Santoro G. The investigation of skin blood flowmotion: a new approach to study the microcirculatory impairment in vascular diseases? Biomed Pharmacother. 2006;60(8):437-442. Doi: 10.1016/j.biopha.2006.07.012.
20. Stewart J, Kohen A, Brouder D, Rahim F, Adler S, Garrick R, Goligorsky MS. Noninvasive interrogation of microvasculature for signs of endothelial dysfunction in patients with chronic renal failure. Am J Physiol Heart Circ Physiol. 2004;287(6):H2687-H2696. Doi: 10.1152/ajpheart.00287.2004.
21. Krupatkin AI, Sidorov VV. Funktsional′naya diagnostika sostoyaniya mikrotsirkulyatorno-tkanevykh sistem: kolebaniya, informatsiya, nelineynost′ : guide for doctors. – M.: Librokom, 2013. – 496 c.
22. Dunaev AV. Multimodal optical diagnostics of microcirculatory-tissue systems of the human body. Staryy Oskol, TNT, 2022:440. (In Russ.).
23. Zherebtsov EA, Zharkikh EV, Loktionova YI, Zherebtsova AA, Sidorov VV, Rafailov EU, Dunaev AV. Wireless Dynamic Light Scattering Sensors Detect Microvascular Changes Associated With Ageing and Diabetes. IEEE Trans Biomed Eng. 2023;70(11):3073-3081. Doi: 10.1109/TBME.2023.3275654.
24. Dunaev A. Wearable Devices for Multimodal Optical Diagnostics of Microcirculatory-Tissue Systems: Application Experience in the Clinic and Space. J Biomed Photonics Eng. 2023;9(2):1-10.
25. Bird B, Stawicki SP. Anatomy, Head and neck, ophthalmic arteries. URL: https://www.ncbi.nlm.nih.gov/books/NBK482317/ (accessed: 22.07.2024).
26. Anisimova AV, Krupatkin AI, Sidorov VV, Zacharkina MV, Yutskova EV, Galkin SS. Laser Doppler flowmetry in the assessment of the microcirculation in patients with acute and chronic cerebrovascular insufficiency. Regional blood circulation and microcirculation. 2014;13(3):31-37. (In Russ.). Doi: 10.24884/1682-6655-2014-13-3-31-37.
27. Goltsov A, Anisimova AV, Zakharkina M, Krupatkin AI, Sidorov VV, Sokolovski SG, Rafailov E. Bifurcation in blood oscillatory rhythms for patients with ischemic stroke: a small scale clinical trial using laser doppler flowmetry and computational modeling of vasomotion. Front Physiol. 2017;(8):160. Doi: 10.3389/fphys.2017.00160.
28. Fedorovich AA, Loktionova YI, Zharkikh EV, Mikhailova MA, Popova JA, Suvorov AV, Zherebtsov EA. Body position affects capillary blood flow regulation measured with wearable blood flow sensors. Diagnostics (Basel). 2021;11(3):436. Doi: 10.3390/diagnostics11030436.
29. Meegalla N, Sood G, Nessel TA, Downs B. Anatomy, Head and neck: Facial Arteries. URL: https://www.ncbi.nlm.nih.gov/books/NBK536932/ (accessed: 15.07.2024).
30. Krupatkin AI. Blood flow oscillations – new diagnostic language in microvascular research. Regional blood circulation and microcirculation. 2014;13(1):83-99. (In Russ.). Doi: 10.24884/1682-6655-2014-13-1-83-99.
31. Fedorovich AA. Microcirculation of the human skin as an object of research. Regional blood circulation and microcirculation. 2017;16(4):11-26. (In Russ.). Doi: 10.24884/1682-6655-2017-16-4-11-26.
32. Krupatkin AI. Clinical neuroangiophysiology of the extremities (perivascular innervation and nervous trophism). Moscow, Nauchnyy Mir, 2003:328. (In Russ.).
33. Zharkikh EV, Dunaev AV. A distributed system of wearable analyzers for the diagnosis of peripheral blood flow disorders in type 2 diabetes mellitus. Biomed Eng. 2024;(1(343)):1-4. (In Russ.).
34. Hu HF, Hsiu H, Sung CJ, Lee CH. Combining laserDoppler flowmetry measurements with spectral analysis to study different microcirculatory effects in human prediabetic and diabetic subjects. Lasers Med Sci. 2017;32(2):327-334. Doi: 10.1007/s10103-016-2117-2.
35. Ladozhskaya-Gapeenko EE, Khrapov KN. Possibilities of Laser-Doppler Flowmetry in assessment of functional state of microcirculation. Regional blood circulation and microcirculation. 2020;19(3):39-45. (In Russ.). Doi: 10.24884/1682-6655-2020-19-3-39-45.
36. Skripal AV, Farkad A, Mashkov KV, Usanov AD, Averyanov AP. Laser flowmetry of microcirculation of the finger depending on the external temperature and the limb position. Regional blood circulation and microcirculation. 2023;22(4):35-41. (In Russ.). Doi: 10.24884/1682-6655-2023-22-4-35-41.
37. Lee B-B, Nicolaides A, Myers K, Meissner M, Kalodiki E, Allegra C, Antignani P, Bækgaard N, Beach K, Belcaro G, Black S, Blomgren L, Bouskela E, Cappelli M, Caprini J, Carpentier P, Cavezzi A, Chastanet S, Christenson J, Ezpeleta S. Venous hemodynamic changes in lower limb venous disease: The UIP consensus according to scientific evidence. Int Angiol. 2016;35(3):236-352.
38. Dunaev AV, Loktionova YI, Zharkikh EV, Fedorovich AA, Sidorov VV, Vasin AV, Dubinin VI. Investigation of blood microcirculation in microgravity with the use of portable laser doppler flowmeters. Aviakosmicheskaya i Ekologicheskaya Meditsina. 2024;58(1):47-54. (In Russ.). Doi: 10.21687/0233-528X-2024-58-1-47-54.
Review
For citations:
Ermolaeva S.A., Loktionova Yu.I., Dubasova E.G., Dunaev A.V., Frolov A.V. Assessment of cutaneous blood microcirculation changes while performing hatha yoga inverted pose using a distributed system of wearable analyzers. Regional blood circulation and microcirculation. 2024;23(4):67-77. (In Russ.) https://doi.org/10.24884/1682-6655-2024-23-4-67-77