Microvascular impairments in axial spondyloarthritis associated with Crohn’s disease
https://doi.org/10.24884/1682-6655-2024-23-4-86-97
Abstract
Introduction. Spondyloarthritis (SpA) associated with inflammatory bowel disease (IBD) is a disease in the SpA group developing in patients with Crohn’s disease (CD) and ulcerative colitis. Gut-vascular barrier impairments, including increased epithelial permeability and endothelial glycocalyx (EGc) damage, have been demonstrated in both CD and axial SpA (axSpA), and can serve as a pathogenetic basis for the joint development and progression of these diseases.
Aim. To evaluate the significance of EGc damage and epithelial permeability markers in patients with CD-associated axSpA.
Materials and methods. We examined 22 patients with axSpA associated with CD (group A), 29 patients with axSpA without IBD (group B), 27 patients with CD (group C) and 28 conditionally healthy controls (group D). Calprotectin (FC) and zonulin (FZ) in feces, hyaluronan and syndecan 1 in serum were studied. Perfusion boundary region (PBR) and the Microvascular Health Index (MVHS) were measured by dark-field microscopy in the sublingual region.
Results. In patients with CD-associated axSpA, an increase in PBR (p<0.001) and a decrease in MVHS (p=0.001) were revealed in comparison with healthy individuals. Only CD patients revealed decreased serum hyaluronan (p=0.006) associated with colitis and deep ulcers on endoscopy. Increased PBR allowed to identify very high axSpA activity in group A with a sensitivity of 100 % and specificity of 83.3 %. In group A patients, a correlation between hyaluronan and FC was found (ρ=–0.541; p=0.030). A classification tree, including FC, FZ, hyaluronan, and MVHS, was constructed to determine the presence of CD in axSpA patients with an accuracy of 90.2 %.
Conclusions. The study of the gut-vascular barrier damage markers allows to improve the methods of diagnosis and assessment of the integral activity of axSpA associated with CD.
About the Authors
D. A. DavydovRussian Federation
Davydov Denis A. – Postgraduate Student, Hospital Therapy Department
6-8, L’va Tolstogo str., Saint Petersburg, 197022
V. N. Marchenko
Russian Federation
Marchenko Valeriy N. – MD, Professor, Hospital Therapy Department
6-8, L’va Tolstogo str., Saint Petersburg, 197022
O. B. Shchukina
Russian Federation
Shchukina Oksana B. – MD, Professor, Department of General Practice (Family Medicine)
6-8, L’va Tolstogo str., Saint Petersburg, 197022
V. I. Trofimov
Russian Federation
Trofimov Vasiliy I. – MD, Professor, Head, Hospital Therapy Department
6-8, L’va Tolstogo str., Saint Petersburg, 197022
D. A. Kuznetsova
Russian Federation
Kuznetsova Daria A. – Cand. (PhD) Sc. Med., Doctor, Laboratory for Diagnostics of Autoimmune Diseases, Center of Molecular Medicine
6-8, L’va Tolstogo str., Saint Petersburg, 197022
I. V. Kholopova
Russian Federation
Kholopova Irina V. – Doctor, Laboratory for Diagnostics of Autoimmune Diseases, Center of Molecular Medicine
6-8, L’va Tolstogo str., Saint Petersburg, 197022
S. V. Lapin
Russian Federation
Lapin Sergey V. – Cand. (PhD) Sc. Med., Head, Laboratory for Diagnostics of Autoimmune Diseases, Center of Molecular Medicine
6-8, L’va Tolstogo str., Saint Petersburg, 197022
T. A. Lozovaya
Russian Federation
Lozovaya Tatiana A. – Cand. (PhD) Sc. Med., Doctor, Functional Diagnostics Department N 1
6-8, L’va Tolstogo str., Saint Petersburg, 197022
A. A. Rubinstein
Russian Federation
Rubinstein Artem A. – Resident, Department of General Practice (Family Medicine)
6-8, L’va Tolstogo str., Saint Petersburg, 197022
E. A. Nikiforova
Russian Federation
Nikiforova Elina A., Medical Student
6-8, L’va Tolstogo str., Saint Petersburg, 197022
T. D. Vlasov
Russian Federation
Vlasov Timur D. – Dr. Sc. Med., Professor, Head, Department of Pathophysiology
6-8, L’va Tolstogo str., Saint Petersburg, 197022
References
1. Mazurov VI. Clinical rheumatology : guide for doctors. 3rd ed, rev. and exp. Moscow, E-noto, 2021:696. (In Russ.).
2. Erdes ShF, Rebrov AP, Dubinina TV et al. Spondyloarthritis: modern terminology and definitions. Ther Archive. 2019;91(5):84-88. (In Russ.). Doi: 10.26442/00403660.2019.05.000208.
3. Belousova EA, Abdulganieva DI, Alexeeva OP et al. Social and demographic characteristics, features of disease course and treatment options of inflammatory bowel disease in Russia: results of two multicenter studies. Almanac Clin Med. 2018;46(5):445-463. (In Russ.). Doi: 10.18786/2072-0505-2018-46-5-445-463.
4. Di Jiang C, Raine T. IBD considerations in spondyloarthritis. Ther Advances Musculoskeletal Dis. 2020;(12):1-13. Doi: 10.1177/1759720x20939410.
5. Agarwal V, Hafis M. Colitis in spondyloarthritis. Indian J Rheumatol. 2020;15(5):52. Doi: 10.4103/0973-3698.284752.
6. Van Praet L, Jans L, Carron P et al. Degree of bone marrow oedema in sacroiliac joints of patients with axial spondyloarthritis is linked to gut inflammation and male sex: Results from the giant cohort. Ann Rheum Dis. 2013;73(6):1186-1189. Doi: 10.1136/annrheumdis-2013-203854.
7. Rosenbaum JT, Davey MP. Time for a gut check: evidence for the hypothesis that HLA-B27 predisposes to ankylosing spondylitis by altering the microbiome. Arthritis Rheum. 2011;63(11):3195-3198. Doi: 10.1002/art.30558.
8. Gill T, Asquith M, Rosenbaum JT, Colbert RA. The intestinal microbiome in spondyloarthritis. Curr Opin Rheumatol. 2015;27(4):319-325. Doi: 10.1097/bor.0000000000000187.
9. Jacques P, Elewaut D. Joint expedition: Linking gut inflammation to arthritis. Mucosal Immunol. 2008;1(5):364- 371. Doi: 10.1038/mi.2008.24.
10. Asquith M, Elewaut D, Lin P, Rosenbaum JT. The role of the gut and microbes in the pathogenesis of spondyloarthritis. Best Pract Res Clin Rheumatol. 2014;28(5):687-702. Doi: 10.1016/j.berh.2014.10.018.
11. Gracey E, Vereecke L, McGovern D et al. Revisiting the gut–joint axis: Links between gut inflammation and spondyloarthritis. Nat Rev Rheumatol. 2020;16(8):415-433. Doi: 10.1038/s41584-020-0454-9.
12. Simanenkov VI, Maev IV, Tkacheva ON et al. Syndrome of increased epithelial permeability in clinical practice. Multidisciplinary national Consensus. Cardiovasc Ther Prevent. 2021;20(1):2758. (In Russ.). Doi: 10.15829/1728-8800-2021-2758.
13. Kotla NG, Isa ILM, Rasala S et al. Modulation of Gut Barrier Functions in Ulcerative Colitis by Hyaluronic Acid System. Adv Sci (Weinh). 2022;9(4):e2103189. Doi: 10.1002/advs.202103189.
14. Rizzo A, Guggino G, Ferrante A, Ciccia F. Role of subclinical gut inflammation in the pathogenesis of spondyloarthritis. Front Med (Lausanne). 2018;5:63. Doi: 10.3389/fmed.2018.00063.
15. Thomas H. Intestinal tract: Gut endothelial cells – another line of defence. Nat Rev Gastroenterol Hepatol. 2016;13(1):4. Doi: 10.1038/nrgastro.2015.205.
16. Claesson-Welsh L, Dejana E, McDonald DM. Permeability of the Endothelial Barrier: Identifying and Reconciling Controversies. Trends Mol Med. 2021;27(4):314-331. Doi: 10.1016/j.molmed.2020.11.006.
17. Petrey AC, de la Motte CA. Hyaluronan in inflammatory bowel disease: Cross-linking inflammation and coagulation. Matrix Biol. 2019;78-79:314-323. Doi: 10.1016/j.matbio.2018.03.011.
18. Palaiologou M, Delladetsima I, Tiniakos D. CD138 (syndecan-1) expression in health and disease. Histol Histopathol. 2014;29(2):177-189. Doi: 10.14670/HH-29.177.
19. Hwang J, Park E, Choi YW et al. Emerging role of syndecans in maintaining homeostasis of colon epithelium during inflammation. Am J Physiol Cell Physiol. 2022;322(5):C960- C966. Doi: 10.1152/ajpcell.00048.2022.
20. Dull RO, Hahn RG. The glycocalyx as a permeability barrier: Basic science and clinical evidence. Crit Care. 2022;26(1):273. Doi: 10.1186/s13054-022-04154-2.
21. Vlasov TD, Lazovskaya OA, Shimanski DA et al. The endothelial glycocalyx: research methods and prospects for their use in endothelial dysfunction assessment. Regional blood circulation and microcirculation. 2020;19(1):5-16. (In Russ.). Doi: 10.24884/1682-6655-2020-19-1-5-16.
22. Shimanski DA, Nesterovich II, Inamova OV et al. Analysis of clinical and anamnestic factors affecting endothelial glycocalyx condition in patients with active rheumatoid arthritis. Arterial Hypertens. 2022;28(2):188-197. (In Russ.). Doi: 10.18705/1607-419X2022-28-2-188-197.
23. Wendling D, Risold JC. Microcirculation in ankylosing spondylitis. Ann Rheum Dis. 1994;53(4):284. Doi: 10.1136/ard.53.4.284-a.
24. Batko B, Maga P, Urbanski K et al. Microvascular dysfunction in ankylosing spondylitis is associated with disease activity and is improved by anti-TNF treatment. Sci Rep. 2018;8(1):13205. Doi: 10.1038/s41598-018-31550-y.
25. Ikonomidis I, Pavlidis G, Katogiannis K et al. Differences in coronary flow reserve and flow-mediated dilation between plaque psoriasis and psoriatic arthritis. Eur Heart J. 2022;43(Suppl 2). Doi: 10.1093/eurheartj/ehac544.2643.
26. Ikonomidis I, Pavlidis G, Kadoglou N et al. Apremilast improves endothelial glycocalyx integrity, vascular and left ventricular myocardial function in psoriasis. Pharmaceuticals. 2022;15(2):172. Doi: 10.3390/ph15020172.
27. Triantafyllou C, Nikolaou M, Ikonomidis I et al. Effects of anti-inflammatory treatment and surgical intervention on endothelial glycocalyx, peripheral and coronary microcirculatory function and myocardial deformation in inflammatory bowel disease patients: A two-arms two-stage clinical trial. Diagnostics. 2021;11(6):993. Doi: 10.3390/diagnostics11060993.
28. Davydov DA, Marchenko VN, Kuznetsova DA et al. Assessment of the endothelial glycocalyx state in patients with axial spondyloarthritis associated with Crohn’s disease. HERALD of North-Western State Med University named after I.I. Mechnikov. 2024;16(1):51-62. (In Russ.). Doi: 10.17816/mechnikov625544.
29. Çekiç C, Kırcı A, Vatansever S et al. Serum Syndecan-1 Levels and Its Relationship to Disease Activity in Patients with Crohn’s Disease. Gastroenterol Res Pract. 2015;2015:850351. Doi: 10.1155/2015/850351.
30. Ierardi E, Giorgio F, Piscitelli D et al. Altered molecular pattern of mucosal healing in Crohn’s disease fibrotic stenosis. World J Gastrointest Pathophysiol. 2013;4(3):53-58. Doi: 10.4291/wjgp.v4.i3.53.
31. Zheng L, Riehl TE, Stenson WF. Regulation of colonic epithelial repair in mice by Toll-like receptors and hyaluronic acid. Gastroenterology. 2009;137(6):2041-2051. Doi: 10.1053/j.gastro.2009.08.055.
32. de la Motte CA. Hyaluronan in intestinal homeostasis and inflammation: implications for fibrosis. Am J Physiol Gastrointest Liver Physiol. 2011;301(6):G945-G949. Doi: 10.1152/ajpgi.00063.2011.
33. Tomasz J, Andrzej B. Hyaluronan reduces colitisinduced intraperitoneal inflammation during peritoneal dialysis. Perit Dial Int. 2022;42(2):212-217. Doi: 10.1177/08968608211014568.
34. Liu W, Liu YY, Zhang MQ et al. A comparative study of the ameliorative effects of hyaluronic acid oligosaccharides and hyaluronic acid on DSS-induced colitis in mice and research on relevant mechanisms. Food Funct. 2023;14(14):6482-6495. Doi: 10.1039/d2fo03644d.
35. Yilmaz PD, Kadiyoran C, Goktepe MH et al. Syndecan 1 may slow the progression of subclinical atherosclerosis in patients with ankylosing spondylitis. Clin Exp Hypertens. 2023;45(1):2156529. Doi: 10.1080/10641963.2022.2156529.
36. Simanenkov VI, Maev IV, Tkacheva ON et al. Epithelial protective therapy in comorbid diseases. Practical Guidelines for Physicians. Ther Archive. 2022;94(8):940-956. (In Russ.). Doi: 10.26442/00403660.2022.08.201523.
37. Voulgari PV. Rheumatological manifestations in inflammatory bowel disease. Ann Gastroenterol. 2011;24(3): 173-180.
Review
For citations:
Davydov D.A., Marchenko V.N., Shchukina O.B., Trofimov V.I., Kuznetsova D.A., Kholopova I.V., Lapin S.V., Lozovaya T.A., Rubinstein A.A., Nikiforova E.A., Vlasov T.D. Microvascular impairments in axial spondyloarthritis associated with Crohn’s disease. Regional blood circulation and microcirculation. 2024;23(4):86-97. (In Russ.) https://doi.org/10.24884/1682-6655-2024-23-4-86-97