Preview

Regional blood circulation and microcirculation

Advanced search

Capabilities of portable laser analyzers in assessing the state of microcirculation and its regulatory mechanisms

https://doi.org/10.24884/1682-6655-2024-23-4-105-113

Abstract

Introduction. The aim of the study was to evaluate the diagnostic capabilities of various modifications of portable analyzers LAZMA-PF when studying the state of microcirculation depending on the tasks set.

Materials and methods. Synchronous assessment of lower extremity microcirculation using a distributed system of single-channel analyzers LAZMA-PF, was performed in patients with unilateral coxarthrosis (n=37) in the initial state and after hip joint replacement. In patients with colorectal cancer (n=27) and in the healthy control group (n=30), a comparative assessment of microcirculation and oxidative metabolism was performed using a multimodal analyzer LAZMA-PF combining two diagnostic technologies – laser Doppler flowmetry and fluorescence spectroscopy.

Results. The perfusion level in the damaged limb in patients with unilateral coxarthrosis, reduced by 57 % (p<0.01) compared to the contralateral limb, was maintained due to a significant tension on the regulatory mechanisms of microcirculation, as evidenced by a more than twofold (p<0.001) increase in the coefficient of variation and increased amplitudes of regulatory rhythms of microcirculation (from 21 % up to 30 %, p<0.05). In the postoperative period, a decrease in perfusion by 10 % (p<0.05) was noted in the intact limb due to increased neurogenic influences and suppression of endothelial oscillations by 24 %, p<0.05. In patients with colorectal cancer, decreased perfusion (by 23 %, p<0.05), microcirculation variability (by 21 %, p<0.05) and amplitudes of tone-forming (from 36 % up to 52 %, p<0.05) and respiratory (by 29 %, p<0.05) microcirculation rhythms were recorded; a decrease in nutritive blood flow (by 40 %, p<0.01) and oxidative metabolism (by 43 %, p<0.01) in comparison with the norm were fixed.

Conclusion. The use of portable laser analyzers on symmetrical areas of the body made it possible to identify a decrease in perfusion in the affected limb with unilateral coxarthrosis and redistribution of microcirculation in favor of the operated limb after hip joint endoprosthesis. When using a multimodal analyzer in patients with colorectal cancer, microcirculation violation of ischemia type and decrease in oxidative metabolism of tissues were recorded.

About the Authors

I. A. Tikhomirova
Yaroslavl State Pedagogical University named after K. D. Ushinsky
Russian Federation

Tikhomirova Irina A. – Sc. D. (Biology), Professor, Head, Department of Medicine

108/1, Respublikanskaya str., Yaroslavl, 150000

 



A. A. Korshunova
Yaroslavl State Pedagogical University named after K. D. Ushinsky
Russian Federation

Korshunova Alexandra A. – Postgraduate tudent, Department of edicine

108/1, Respublikanskaya str., Yaroslavl, 150000

 



V. A. Lemehova
Yaroslavl State Pedagogical University named after K. D. Ushinsky State Institution of Healthcare of Yaroslavl Region «Regional oncology hospital»
Russian Federation

Lemehova Victoria A. – Oncologist

67, Oktyabrya ave., Yaroslavl, 150054



References

1. Stern MD. In vivo evaluation of microcirculation by coherent light scattering. Nature. 1975;254:56-58. Doi: 10.1038/254056a0.

2. Holloway GA Jr, Watkins DW. Laser Doppler measurement of cutaneous blood flow. J Invest Dermatol. 1977;69:306- 309. Doi: 10.1111/1523-1747.ep12507665.

3. Fedorovich AA. Microcirculation of the human skin as an object of research. Regional blood circulation and microcirculation. 2017;16(4):11-26. (In Russ.). Doi: 10.24884/1682-6655-2017-16-4-11-26/

4. Vasilev AP, Streltsova NN. Opportunities and limitations of laser Doppler flowmetry in the assessment of skin microcirculation in patients with arterial hypertension. Regional blood circulation and microcirculation. 2015;14(1):41-45. (In Russ.). Doi: 10.24884/1682-6655-2015-14-1-41-45.

5. Holowatz LA, Thompson-Torgerson CS, Kenney WL. The human cutaneous circulation as a model of generalized microvascular function. J Appl Physiol. 2008;105(1):370-372. Doi: 10.1152/japplphysiol.00858.2007.

6. Krupatkin AI, Sidorov VV. Functional diagnostics of mikrotsirkuljatorno-tissue systems: Fluctuations, information, nonlinearity : guide for doctors. Moscow, Librokom, 2013:496. (In Russ.).

7. Jung F, Leithäuser B, Landgraf H, Jünger M, Franzeck U, Pries A, Sternitzky R, Franke RP, Forconi S, Ehrly AM. Laser Doppler flux measurement for the assessment of cutaneous microcirculation - critical remarks. Clin Hemorheol Microcirc. 2013;55(4):411-416. Doi: 10.3233/CH-131778.

8. Vcherashniy DB, Yerofeyev IP, Novoseltsev SV. Vozmozhnosti i ogranicheniya metoda lazernoy dopplerovskoy floumetrii. Nauchnyye vedomosti BGU. Seriya Meditsina. Farmatsiya. 2014;(24(195)):35-41. (In Russ.).

9. Kozlov VI, Morozov MV, Gurova OA. Laser Doppler fluxmetry of the skin microcirculation in different areas of the body. Regional blood circulation and microcirculation. 2012;11(1):58-61. (In Russ.). Doi: 10.24884/1682-6655-2012-11-1-58-61.

10. Tikhomirova IA, Baboshina NV, Terekhin SS. LDF method capabilities in the estimation of age-related features of the microcirculation system functioning. Regional blood circulation and microcirculation. 2018;17(3):80-86. (In Russ.). Doi: 10.24884/1682-6655-2018-17-3-80-86.

11. Filina MA, Potapova EV, Makovik IN, Zharkih EV, Dremin VV, Zherebtsov EA, Dunaev AV, Sidorov VV, Kru patkin AI, Alimicheva EA, Masalygina GI, Muradyan VF. Functional Changes in Blood Microcirculation in the Skin of the Foot during Heating Tests in Patients with Diabetes Mellitus // Human Physiol. 2017;43(6):693-699. (In Russ.). Doi: 10.1134/s0362119717060020.

12. Potapova EV, Filina MA, Kozlov IO, Zharkih EV, Drjomin VV, Malaja NS, Snimshhikova IA, Dunaev AV, Sidorov VV, Krupatkin AI. Osobennosti lokal′noy mikrotsirkulyatsii krovi u patsiyentov s psoriazom. Regional blood circulation and microcirculation. 2018;17(3):58-64. (In Russ.). Doi: 10.24884/1682-6655-2018-17-3-58-64.

13. Fedorovich AA, Loktionova YI, Zharkikh EV, Gorsh kov AYu, Korolev AI, Dadaeva VA, Drapkina OM, Zherebtsov EA. Skin microcirculation in middle-aged men with newly diagnosed arterial hypertension according to remote laser Doppler flowmetry data. Microvasc Res. 2022;144:104419. Doi: 10.1016/j.mvr.2022.104419.

14. Tikhomirova I, Petrochenko E, Muravyov A, Malysheva Y, Petrochenko A, Yakusevich V, Oslyakova A. Microcirculation and blood rheology abnormalities in chronic heart failure. Clin Hemorheol Microcirc. 2017;65(4):383-391. Doi: 10.3233/CH-16206.

15. Mikhailova MA, Fedorovich AA, Gorshkov AYu, Korolev AI, Dadaeva VA, Zharkikh EV, Loktionova YuI, Dunaev AV, Sidorov VV, Drapkina OM. Comparative evaluation of the parameters of laser doppler flowmetry of the skin of healthy persons using devices of various modifications. Regional blood circulation and microcirculation. 2023;22(3):41- 50. (In Russ.). Doi: 10.24884/1682-6655-2023-22-3-41-50.

16. Loktionova YI, Zharkikh EV, Kozlov IO, Zherebtsov EA, Bryanskaya SA, Zherebtsova AI, Sidorov VV, Sokolovski SG, Dunaev AV, Rafailov EU. Pilot studies of age-related changes in blood perfusion in two different types of skin. Proc SPIE. 2019;11065:110650S. Doi: 10.1117/12.2522968.

17. Loktionova JuI, Zharkih EV, Zherebcova AI, Kozlov IO, Zherebcov EA, Masalygina GI, Dunaev AV. Issledovaniye vozrastnykh i patologicheskikh osobennostey parametrov mikrogemodinamiki v norme i pri sakharnom diabete 2 tipa s pomoshch′yu nosimykh lazernykh dopplerovskikh floumetrov. Fundamentalnyye i prikladnyye problemy tekhniki i tekhnologii. 2019;6(338):131-137. (In Russ.).

18. Fedorovich AA, Markov DS, Malishevsky MV, Yudakov OO, Gorshkov AYu, Baldin AV, Zhuk DM, Spasenov AYu, Korolev AI, Koptelov AV, Drapkina OM. Microcirculatory disorders in the forearm skin in the acute phase of COVID-19 according to laser Doppler flowmetry. Regional blood circulation and microcirculation. 2022;21(3):56-63. (In Russ.). Doi: 10.24884/1682-6655-2022-21-3-56-63.

19. Zharkikh EV, Loktionova YuI, Fedorovich AA, Gorsh kov AY, Dunaev AV. Assessment of Blood Microcirculation Changes after COVID-19 Using Wearable Laser Doppler Flowmetry. Diagnostics (Basel). 2023;13(5):920. Doi: 10.3390/diagnostics13050920.

20. Dunaev АV, Loktionova YuI, Zharkikh EV, Fedorovich AA, Sidorov VV, Vasin AV, Dubinin VI. Investigation of blood microcirculation in microgravity with the use of portable laser doppler flowmeters. Aerospace Environment Med. 2024;58(1):47-54. (in Russ.). Doi: 10.21687/0233-528X-2024-58-1-47-54.

21. Krupatkin AI. Blood flow oscillations – new diagnostic language in microvascular research. Regional blood circulation and microcirculation. 2014;13(1):83-99. (In Russ.). Doi: 10.24884/1682-6655-2014-13-1-83-99.

22. Glagoleva EN, Sidorov VV, Podoplekina ND, Faizullina DR. Evaluation of microcirculatory tissue systems after cosmetic procedures. Regional blood circulation and microcirculation. 2020;19(3):25-30. (In Russ.). Doi: 10.24884/1682-6655-2020-19-3-25-30.

23. Sidorov VV, Rybakov YuL, Gukasov VM, Evtushenko GS. A System of Local Analyzers for Noninvasive Diagnostics of the General State of the Tissue Microcirculation System of Human Skin. Biomed Eng. 2022;55(6):379-382. Doi: 10.1007/s10527-022-10140-3.

24. Metel’skaya VA, Gumanova NG. Skrining-metod opredeleniya urovnya metabolitov oksida azota v syvorotke krovi cheloveka. Klinicheskaya i laboratornaya diagnostika. 2005;(6):15-18. (in Russ.).

25. Miranda KM, Espey MG, Wink DA. A Rapid, Simple Spectrophotometric Method for Simultaneous Detection of Nitrate and Nitrite NITRIC OXIDE. Biol Chem. 2001;5(1):62-71. Doi: 10.1006/niox.2000.0319.

26. Kozlov VI, Sakharov VN, Gurova OA, Sidorov VV. Laser doppler flowmetry assessment of microcirculation in children of 6–7 years old. Regional blood circulation and microcirculation. 2021;20(3):46-53. (In Russ.). Doi: 10.24884/1682-6655-2021-20-3-46-53.

27. Mikheyeva SA, Bulatetskaya LM, Chorniy SI, Shevchenko VP, Zhukov AV. Mikrotsirkulyatsiya v operirovannoy konechnosti u patsiyentov posle total’nogo endoprotezirovaniya tazobedrennogo sustava. Anesteziologiya i reanimatologiya. 2012;(2):39-43. (in Russ.).

28. Men’shchikova IA, Yershov AS. Reabilitatsiya bol’nykh revmatoidnym artritom posle endoprotezirovaniya tazobedrennogo sustava. Ural Med J. 2022;21(2):67-70. (In Russ.). Doi: 10.52420/2071-5943-2022-21-2-67-70.

29. Luque-González MA, Reis RL, Kundu SC, Caballero D. Human Microcirculation-on-Chip Models in Cancer Research: Key Integration of Lymphatic and Blood Vasculatures. Adv Biosyst. 2020;4(7):e2000045. Doi: 10.1002/adbi.202000045.

30. Jiang YQ, Cao SE, Cao S, Chen JN, Wang GY, Shi WQ, Deng YN, Cheng N, Ma K, Zeng KN, Yan XJ, Yang HZ, Huan WJ, Tang WM, Zheng Y, Shao CK, Wang J, Yang Y, Chen GH. Preoperative identification of microvascular invasion in hepatocellular carcinoma by XGBoost and deep learning. J Cancer Res Clin Oncol. 2021;147(3):821-833. Doi: 10.1007/s00432-020-03366-9.

31. Multhoff G, Vaupel P. Hypoxia Compromises Anti-Cancer Immune Responses. Adv Exp Med Biol. 2020;1232:131- 143. Doi: 10.1007/978-3-030-34461-0_18.

32. Wicks EE, Semenza GL. Hypoxia-inducible factors: cancer progression and clinical translation. J Clin Invest. 2022;132(11):e159839. Doi: 10.1172/JCI159839.

33. Szabo C. Gasotransmitters in cancer: from pathophysiology to experimental therapy. Nat Rev Drug Discov. 2016;15(3):185-203. Doi: 10.1038/nrd.2015.1.


Review

For citations:


Tikhomirova I.A., Korshunova A.A., Lemehova V.A. Capabilities of portable laser analyzers in assessing the state of microcirculation and its regulatory mechanisms. Regional blood circulation and microcirculation. 2024;23(4):105-113. (In Russ.) https://doi.org/10.24884/1682-6655-2024-23-4-105-113

Views: 240


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-6655 (Print)
ISSN 2712-9756 (Online)