Preview

Regional blood circulation and microcirculation

Advanced search

Possibilities and Prospects of Therapeutic Stimulation of Angiogenesis in Injuries of the Great Arteries of the Extremities (Systematic Review)

https://doi.org/10.24884/1682-6655-2025-24-2-11-19

Abstract

The structure of combat surgical pathology due to modern defeat factors of modern weapons used in armed conflicts of recent times is characterized by a high frequency of injuries of blood vessels of the lower extremities, which is often accompanied by massive bleeding and/or acute limb ischemia (ALI). A review of scientific literature devoted to the types of surgical methods for the treatment of acute limb ischemia is presented. The issues of neoangiogenesis regulation in tissues are considered, the possibilities of application of genetically engineered technologies of angiogenesis stimulation in patients with chronic lower limb ischemia are presented. The results of experimental and clinical studies in this direction are presented. A promising concept of the possibility of application of genetically engineered complexes of VEGF-dependent angiogenesis stimulation based on cyclic plasmid DNA of this growth factor is substantiated. The review included data from relevant articles describing methods of angiogenesis stimulation in ischemia, as well as the structure and nature of limb arterial injuries published in the period of January 2013 and January 2023 and presented in PubMed, ScienceDirect, and eLibrary databases. Currently, surgical treatment of the wounded with the injuries of the main arteries of the extremities does not always allow to achieve the optimal result. The key to accelerated restoration of the injured limb arteries may be the understanding of the processes of angiogenesis stimulation and development of new techniques of adjuvant therapeutic stimulation of angiogenesis in this category of patients. In the long term, this will lead to a decrease in disability and improved outcomes of treatment of modern surgical trauma. Taking into account numerous literature sources, publications of our colleagues, we can conclude that the techniques of therapeutic stimulation of angiogenesis in patients with the injury of the main arteries of the limb are promising and effective. However, further study of angiogenesis mechanisms in this type of injuries is required, as well as expansion of indications for its application.

About the Authors

A. R. Khasanov
Military Medical Academy
Russian Federation

Khasanov Artur R. – Adjunct, Research Center

6, Academica Lebedeva str., Saint Petersburg, 194044



K. P. Golovko
Military Medical Academy
Russian Federation

Golovko Konstantin P. –Doctor of Medical Sciences, Associate Professor, Head, Research Center

6, Academica Lebedeva str., Saint Petersburg, 194044



E. K. Gavrilov
Military Medical Academy
Russian Federation

Gavrilov Evgenii K. – Doctor of Medical Sciences, Lecturer, 1st Department (Advanced Medical Surgery)

6, Academica Lebedeva str., Saint Petersburg, 194044



R. I. Glushakov
Military Medical Academy
Russian Federation

Glushakov Ruslan I. – Doctor of Medical Sciences, Head, Research Department (Medical and Biological Research), Research Center

6, Academica Lebedeva str., Saint Petersburg, 194044



I. A. Barsuk
Military Medical Academy
Russian Federation

Barsuk Ilya A. – Adjunct, Research Center

6, Academica Lebedeva str., Saint Petersburg, 194044



References

1. Klinkov RR, Eroshkin IA, Vasil’ev DYu, Moskalenko VA. Lechenie kriticheskoi ishemii nizhnikh konechnostei - sovremennye tendentsii (Obzor literatury). Diagnosticheskaya i interventsionnaya radiologiya. 2022;16 (2): 46-53. (In Russ.). https://doi.org/10.25512/DIR.2022.16.2.05.

2. Gupta R, Tongers J, Losordo DW. Human studies of angiogenic gene therapy. Circulation Research. 2009;105(8):724– 736. https://doi.org/10.1161/circresaha.109.200386.

3. Makarevich PI, Shevelev AYa, Rybalkin IN, et al. Novye plazmidnye konstruktsii, prednaznachennye dlya terapevticheskogo angiogeneza i nesushchie geny angiogennykh faktorov rosta – VEGF, HGF i angiopoetina-1. Kletochnaya transplantologiya i tkanevaya inzheneriya. 2010;5(1):47-52. (In Russ.). https://doi.org/10.23868/gc121489.

4. Shyu KG, Chang Н, Wang BW, Kuan Р. Intramuscular vascular endothelial growth factor gene therapy in patients with chronic critical leg ischemia. The American Journal of Medicine. 2003; 114(2):85–92. https://doi.org/10.1016/s0002-343(02)01392-x.

5. Birk DM, Barbato J, Mureebe L, Chaer RA. Current insights on the biology and clinical aspects of VEGF regulation. Vascular and Endovascular Surgery. 2008;42(6):517- 530. https://doi.org/10.1177/1538574408322755.

6. Grochot-Przeczek A, Dulak J, Jozkowicz A. Therapeutic angiogenesis for revascularization in peripheral artery disease. Gene. 2013;525(2):220-228. https://doi.org/10.1016/j.gene.2013.03.097.

7. Pan T, Wei Z, Fang Y, Dong Z, Fu W. Therapeutic efficacy of CD34(+) cell-involved mononuclear cell therapy for nooption critical limb ischemia: a meta-analysis of randomized controlled clinical trials. Vascular Medicine. 2018;23(3):219- 231. https://doi.org/10.1177/1358863x17752556.

8. Shibuya M. Vascular endothelial growth factor and its receptor system: physiological functions in angiogenesis and pathological roles in various diseases. Journal of Biochemistry. 2013;153(1):13-19. https://doi.org/10.1093/jb/mvs136.

9. Melincovici CS, Boşca AB, Şuşman S, et al. Vascular endothelial growth factor (VEGF) - key factor in normal and pathological angiogenesis. Romanian Journal of Morpholgy & Embryology. 2018;59(2):455-467. https://doi.org/10.47162/rjme.

10. Peach CJ, VW Mignone VW, Arruda MA, et al. Molecular pharmacology of VEGF-A isoforms: binding and signalling at VEGFR2. International Journal of Molecular Sciences. 2018;19(4):1264. https://doi.org/10.3390/ijms19041264.

11. Shibuya M. VEGF-VEGFR System as a target for suppressing inflammation and other diseases. Endocrine, Metabolic & Immune Disorders - Drug Targets. 2015;1(2):135-144. https://doi.org/10.2174/1871530315666150316121956.

12. Clahsen Th, Büttner Ch, Hatami N, et al. Role of endogenous regulators of hem- and lymphangiogenesis in corneal transplantation. Journal of Clinical Medicine. 2020;9(2):479. https://doi.org/10.3390/jcm9020479.

13. Wilkinson HN, Hardman MJ. Wound healing: cellular mechanisms and pathological outcomes. Open biology. 2020;10(9):1-14. https://doi.org/10.1098/rsob.200223.

14. Peppicelli S, Bianchini F, Calorini L. Inflammatory cytokines induce vascular endothelial growth factor-C expression in melanoma-associated macrophages and stimulate melanoma lymph node metastasis. Oncology Letters. 2014;8(3):1133- 1138. https://doi.org/10.3892/ol.2014.2297.

15. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:71. https://doi.org/10.1136/bmj.n71.

16. Bokeriya LA, Eremeeva MV, Arakelyan VS, Demidova OA. Lechenie khronicheskoi ishemii nizhnikh konechnostei s ispol’zovaniem stimulyatorov neoangiogeneza. Klinicheskaya Fiziologiya Krovoobrashcheniya. 2013;(1):55-60. (In Russ.).

17. Mikhailichenko VYu, Tsaturyan AB, Khizriev SM, et al. Opyt primeneniya terapevticheskogo angiogeneza preparatom ‟Neovaskulgen” u patsientov s neshuntabel’nym porazheniem arterii nizhnikh konechnostei. Tavricheskii mediko-biologicheskii vestnik. 2022;25(2):55-60. (In Russ.). https://doi.org/10.35630/2023/13/6.605.

18. Deev RV, Kalinin RE, Chervyakov YuV. Rezul’taty primeneniya genterapevticheskogo preparata ‟Neovaskulgen” u patsientov s khronicheskoi ishemiei nizhnikh konechnostei: 1 god nablyudenii // Vestnik Natsional’nogo Mediko-Khirurgicheskogo Tsentra im N. I. Pirogova. 2011; 6(4):20-25. (In Russ.). https://doi.org/10.21688/1681-3472-2020-4-83-91.

19. Plavinskii SL, Shabalkin PI, Isaev AA, Deev RV. Cost-effectiveness of genotherapeutic drug neovasculgen i n treatment of chronic lower limb ischemia. Vestnik Severo-Zapadnogo Gosudarstvennogo Meditsinskogo Universiteta im. I.I. Mechnikova. 2014;6 (2):54-59. (In Russ.). https://doi.org/10.21518/2079-701X-2017-14-132-135.

20. Plavinskii SL, Shabalkin PI. Otsenka stoimosti – poleznosti i stoimosti – effektivnosti genno-terapevticheskogo preparata Neovaskulgen pri lechenii khronicheskoi ishemii nizhnikh konechnostei. Meditsinskii Sovet. 2017;14:132-135. (In Russ.). https://doi.org/10.21518/2079-701X-2017-14-132-135.

21. Slobodkina E, Boldyreva M, Karagyaur M, et al. Therapeutic angiogenesis by a “dynamic duo”: simultaneous expression of HGF and VEGF165 by novel bicistronic plasmid restores blood flow in ischemic skeletal muscle. Pharmaceutics. 2020;12(12):1231. https://doi.org/10.3390/pharmaceutics12121231.

22. Yudin MA, Plaksa IL, Mzhavanadze ND, et al. Otsenka sistemnogo raspredeleniya i angiogennogo effekta pl-VEGF165 v modeli ishemii konechnostei. Patologiya krovoobrashcheniya i kardiokhirurgiya. 2015;19(4-2): 33-42. (In Russ.). https://doi.org/10.21688/1681-3472-2015-4-2-33-42.

23. Barć P, Antkiewicz M, Śliwa B, et al. Double VEGF/HGF gene therapy in critical limb ischemia complicated by diabetes mellitus. Journal of Cardiovascular Translational Research. 2021; 14 (3):409-415. https://doi.org/10.1007/s12265-020-10066-9.

24. Liu Y, Li J, Zhou J, et al. Angiogenesis and functional vessel formation induced by interstitial flow and vascular endothelial growth factor using a microfluidic chip. Micromachines (Basel). 2022;13(2):225. https://doi.org/10.3390/mi13020225.

25. Limaev IS, Vetrova YuA. Lechebnyi patomorfoz poperechnopolosatoi skeletnoi myshechnoi tkani pri zabolevaniyakh arterii nizhnikh konechnostei posle vvedeniya plazmidy, kodiruyushchei VEGF165. Mechnikovskie chteniya-2022. 2022;1(2):79-80. (In Russ.). https://elibrary.ru/item.asp?id=49120727.

26. Percival CJ, Richtsmeier JT. Angiogenesis and intramembranous osteogenesis. Dev Dyn. 2013;242(8):909-922. https://doi.org/10.1002/dvdy.23992.

27. Rumney RMH, Lanham SA, Kanczler JM, et al. In vivo delivery of VEGF RNA and protein to increase osteogenesis and intraosseous angiogenesis. Scientific Reports. 2019;9(1):17745. https://doi.org/10.1038/s41598-019-53249-4.

28. Mikhailov IP, Borovkova NV, Kudryashova NE, et al. Primenenie autologichnykh gemopoeticheskikh stvolovykh kletok u neoperabel’nykh patsientov s khronicheskoi kriticheskoi ishemiei nizhnikh konechnostei. Vestnik Khirurgii im. I. I. Grekova. 2021;180(5):85-90. (In Russ.). https://doi.org/10.24884/0042-4625-2021-180-5-85-90.

29. Owens BD, Belmont PJ. Combat orthopedic surgery: lessons learned in Iraq and Afghanistan. SLACK Incorporated, 2011. 328 р. https://doi.org/10.1515/9781626370203-009.

30. Paulus N, Jacobs M, Greiner A. Primary and secondary amputation in critical limb ischemia patients: different aspects. Acta Chirurgica Belgica. 2012;112(4):251-254. https://doi.org/10.1080/00015458.2012.11680834.

31. Fowkes FGR, Rudan D, Rudan I, et al. Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: a systematic review and analysis. Lancet. 2013;382(9901):1329-1340. https://doi.org/10.1016/S0140-6736(13)61249-0.

32. Badalov VI, Samokhvalov IM, Koskin VS, et al. Khirurgicheskoe lechenie obshirnykh defektov myagkikh tkanei konechnostei i taza. Meditsinskii Vestnik GVKG im. N. N. Burdenko. 2022;4(10):16-23. (In Russ.). https://doi.org/10.53652/2782-1730-2022-3-4-16-23.

33. Samokhvalov IM, Golovko KP, Boyarintsev VV, et al. Obosnovanie kontseptsii rannego patogeneticheskogo lecheniya tyazhelykh ranenii i travm. Vestnik Rossiiskoi Voenno-Meditsinskoi Akademii. 2020;3(71):23-28 (In Russ.). https://doi.org/10.17816/brmma50526.

34. Denisov AV, Badalov VI, Krainyukov PE, et al. The structure and nature of modern combat surgical trauma. Voenno-Meditsinskii Zhurnal. 2021;342(9):12-20. (In Russ.). https://doi.org/10.52424/00269050_2021_342_9_12.

35. Samokhvalov IM, Krainyukov PE, Trukhan AP, et al. Sravnitel’noe issledovanie osnovnykh kharakteristik vzryvnoi patologii voennogo i mirnogo vremeni. Moskovskii Khirurgicheskii Zhurnal. 2021;(4):58-64. (In Russ.). https://doi.org/10.17238/2072-3180-2021-4-58-64.

36. Samokhvalov IM, Kryukov EV, Markevich VYu, et al. Voenno-polevaya khirurgiya v 2031 godu. Voenno-Meditsinskii Zhurnal. 2021;342(9):4-11. (In Russ.). https://doi.org/10.52424/00269050_2021_342_9_04.

37. Samokhvalov IM, Goncharov AV, Chirskii VS, et al. «Potentsial’no spasaemye» ranenye - rezerv snizheniya dogospital’noi letal’nosti pri raneniyakh i travmakh. Skoraya meditsinskaya pomoshch’. 2019;20(3):10-17. (In Russ.). https://doi.org/10.24884/2072-6716-2019-0-3-10-17.

38. Blackbourne LH, Baer DG, Eastridge BJ, et al. Military medical revolution: prehospital combat casualty care. Journal of Trauma Acute Care Surgery. 2012;73(6 Suppl 5):372-377. https://doi.org/10.1097/TA.0b013e3182755662.

39. Trishkin DV, Kryukov EV, Chuprina AP, et al. Metodicheskie rekomendatsii po lecheniyu boevoi khirurgicheskoi travmy. (In Russ.). https://elibrary.ru/item.asp?id=50288647.

40. Gavrilov EK, Zokhrabov FI, Khubulava GG. Ul’trazvukovoe angioskanirovanie v rannei diagnostike boevoi ognestrel’noi sosudistoi travmy nizhnikh konechnostei. Flebologiya. 2023;17(4):320-328. (In Russ.). https://doi.org/10.17116/flebo202317041320.

41. Simakova IA, Papitashvili VG, Arakelyan VS, Khon VL. Otdalennye rezul’taty distal’nykh rekonstruktsii arterial’nogo rusla u patsientov s kriticheskoi ishemiei nizhnikh konechnostei. Nauchno-prakticheskaya konferentsiya serdechnososudistykh khirurgov Moskvy. 2022: 32. (In Russ.). https://elibrary.ru/item.asp?id=50251210.

42. Shah DM, Darling RC, Chang BB, et al. Long-term results of in situ saphenous vein bypass. Analysis of 2058 cases. Annals of Surgery. 1995;222(4):438-446; discussion 446-448. https://doi.org/10.1201/9780429434020-29.

43. Lancaster RT, Conrad MF, Patel VI, et al. Predictors of early graft failure after infrainguinal bypass surgery: a riskadjusted analysis from the NSQIP. European Journal of Vascular et Endovascular Surgery. 2012;43(5):549-555. https://doi.org/10.1016/j.jvs.2012.03.250.

44. Conte MS, Geraghty PJ, Bradbury AW, et al. Suggested objective performance goals and clinical trial design for evaluating catheter-based treatment of critical limb ischemia. Journal of Vascular Surgery. 2009;50(6):1462-1473. https://doi.org/10.1016/j.jvs.2009.09.044.

45. David SK, Sarah BT, David WS, Thomas JW. Predictors and timing of amputations in military lower extremity trauma with arterial injury. The Journal of Trauma and Acute Care Surgery. 2019;87(1):172-177. https://doi.org/10.1097/TA.0000000000002185.

46. Pecoraro AR, Hosfield BD, Li H, et al. Angiogenesis: a cellular response to traumatic injury. Shock. 2021;55(3):301- 310. https://doi.org/10.1097/shk.0000000000001643.


Review

For citations:


Khasanov A.R., Golovko K.P., Gavrilov E.K., Glushakov R.I., Barsuk I.A. Possibilities and Prospects of Therapeutic Stimulation of Angiogenesis in Injuries of the Great Arteries of the Extremities (Systematic Review). Regional blood circulation and microcirculation. 2025;24(2):11-19. (In Russ.) https://doi.org/10.24884/1682-6655-2025-24-2-11-19

Views: 28


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-6655 (Print)
ISSN 2712-9756 (Online)