Применение метода флуоресцентной ангиографии с использованием индоцианина зеленого: экспериментальные и клинические исследования
https://doi.org/10.24884/1682-6655-2025-24-3-4-12
Аннотация
В последние годы значительно расширилось использование метода флуоресцентной визуализации в хирургии. Флуоресцентная ангиография – это метод оценки перфузии тканей, который применяют в различных областях медицины. Флуоресцентная ангиография использует сигнал флуоресценции, испускаемый введенными веществами (флуорофорами) после облучения специальными лазерными источниками, обеспечивая врачу визуализацию тканей в режиме реального времени. В данном обзоре рассматриваются наиболее распространенные аспекты клинического применения флуоресценции. Постоянно растущее использование флуоресцентной ангиографии, высокая специфичность и чувствительность метода в ближайшем будущем превратят его в стандарт медицинской помощи.
Ключевые слова
Об авторах
Т. А. ЛелявинаРоссия
Лелявина Татьяна Александровна – д-р мед. наук, ведущий научный сотрудник Института экспериментальной медицины
197341, Санкт-Петербург, ул. Аккуратова, д. 2
О. В. Корнюшин
Россия
Корнюшин Олег Викторович – канд. мед. наук, хирург, доцент кафедры факультетской хирургии с клиникой, старший научный сотрудник Института экспериментальной
197341, Санкт-Петербург, ул. Аккуратова, д. 2
Р. Р. Шемилов
Россия
Шемилов Рамзан Русланович – хирург, ассистент кафедры акультетской хирургии с клиникой
197341, Санкт-Петербург, ул. Аккуратова, д. 2
В. В. Маслей
Россия
Маслей Виталий Васильевич – ассистент кафедры факультетской хирургии с клиникой Института медицинского образования
197341, Санкт-Петербург, ул. Аккуратова, д. 2
Д. Л. Сонин
Россия
Сонин Дмитрий Леонидович – канд. мед. наук, зав. НИО микроциркуляции и метаболизма миокарда Института экспериментальной медицины
197341, Санкт-Петербург, ул. Аккуратова, д. 2
Г. В. Папаян Г. В.,
Россия
Папаян Гарри Вазгенович – канд. техн. наук, старший научный сотрудник Института экспериментальной медицины
197341, Санкт-Петербург, ул. Аккуратова, д. 2
И. Н. Данилов
Россия
Данилов Иван Николаевич – зав. кафедрой факультетской хирургии с клиникой лечебного факультета Института медицинского образования
197341, Санкт-Петербург, ул. Аккуратова, д. 2
М. М. Галагудза
Россия
Галагудза Михаил Михайлович – д-р мед. наук, профессор и член-корр. РАН, директор Института экспериментальной медицины
197341, Санкт-Петербург, ул. Аккуратова, д. 2
Список литературы
1. Stewart HL, Birch DJS Fluorescence Guided Surgery. Methods Appl Fluoresc. 2021:26;9(4).
2. Morales-Conde S, Licardie E, Alarcón I, Balla A. Indocyanine green (ICG) fluorescence guide for the use and indications in general surgery: recommendations based on the descriptive review of the literature and the analysis of experience. Cir Esp (Engl Ed). 2022;100(9):534-554.
3. Cassinotti E, Al-Taher M, Antoniou SA. European Association for Endoscopic Surgery (EAES) consensus on Indocyanine Green (ICG) fluorescence-guided surgery. Surg Endosc. 2023;37(3):1629-1648.
4. Potharazu AV, Gangemi A. Indocyanine green (ICG) fluorescence in robotic hepatobiliary surgery: A systematic review. Int J Med Robot. 2023;19(1):e2485.
5. Wang LG, Gibbs SL. Improving precision surgery: A review of current intraoperative nerve tissue fluorescence imaging. Curr Opin Chem Biol. 2023;76:102361.
6. Veccia A, Antonelli A, Hampton LJ. Near infrared Fluorescence Imaging with Indocyanine Green in Robot-assisted Partial Nephrectomy: Pooled Analysis of Comparative Studies. Eur Urol Focus. 2020;6(3):505-512.
7. Li H, Kim Y, Jung H, Hyun JY, Shin I. Near-infrared (NIR) fluorescence-emitting small organic molecules for cancer imaging and therapy. Chem Soc Rev. 2022;51(21):8957-9008.
8. Kitagawa H, Yokota K, Marui A. Near-infrared fluorescence imaging with indocyanine green to assess the blood supply of the reconstructed gastric conduit to reduce anastomotic leakage after esophagectomy: a literature review. Surg Today. 2023;53(4):399-408.
9. Cacciamani GE, Shakir A, Tafuri A, Best practices in nearinfrared fluorescence imaging with indocyanine green (NIRF/ICG)-guided robotic urologic surgery: a systematic reviewbased expert consensus. World J Urol. 2020;38(4):883-896.
10. ICG-флуоресцентная навигация в абдоминальной хирургии: учеб.-метод. пособие / под ред. В. А. Кащенко. СПб., 2022. 84 c.
11. Chen Q, Zhou R, Weng J, Lai Y. Extrahepatic biliary tract visualization using near-infrared fluorescence imaging with indocyanine green: optimization of dose and dosing time. Surg Endosc. 2021;35(10):5573-5582.
12. Esposito C, Borgogni R, Autorino G. Applications of Indocyanine Green-Guided Near-Infrared Fluorescence Imaging in Pediatric Minimally Invasive Surgery Urology: A Narrative Review. J Laparoendosc Adv Surg Tech A. 2022;32(12):1280-1287.
13. Van Den Hoven P, Verduijn PS, Van Capelle L. Quantification of near-infrared fluorescence imaging with indocyanine green in free flap breast reconstruction. J Plast Reconstr Aesthet Surg. 2022;75(6):1820-1825.
14. Van Den Hoven P, Tange F, Van Der Valk J. Normalization of Time-Intensity Curves for Quantification of Foot Perfusion Using Near-Infrared Fluorescence Imaging With Indocyanine Green. J Endovasc Ther. 2023;30(3):364-371.
15. Sutton PA, van Dam MA, Cahill RA. Fluorescence-guided surgery: comprehensive review. BJS Open. 2023;7(3):zrad049.
16. Yeung TM. Fluorescence imaging in colorectal surgery. Surg Endosc. 2021;35(9):4956-4963.
17. Turner SR, Molena DR. The Role of Intraoperative Fluorescence Imaging During Esophagectomy. Thorac Surg Clin. 2018;28(4):567-571.
18. Daskalaki D, Aguilera F, Patton K, Giulianotti PC. Fluorescence in robotic surgery. J Surg Oncol. 2015;112(3):250-256.
19. Bjurlin MA, McClintock TR, Stifelman MD. Near-infrared fluorescence imaging with intraoperative administration of indocyanine green for robotic partial nephrectomy. Curr Urol Rep. 2015;16(4):20.
20. Van Den Hoven P, Van Den Berg SD, Van Der Valk JP. Assessment of Tissue Viability Following Amputation Surgery Using Near-Infrared Fluorescence Imaging With Indocyanine Green. Ann Vasc Surg. 2022;78:281-287.
21. Gosvig K, Jensen SS, Qvist N. Quantification of ICG fluorescence for the evaluation of intestinal perfusion: comparison between two software-based algorithms for quantification. Surg Endosc. 2021;35(9):5043-5050.
22. Vilz TO, Kalff JC, Stoffels B. Evidence of indocyanine green fluorescence in robotically assisted colorectal surgery: What is the status? Chirurg. 2021;92(2):115-121.
23. Kashchenko VA, Kamshilin AA, Zaitsev VV. Possibilities of tissue perfusion assessment in abdominal surgery: integration into the intraoperative system of safety control points. Khirurgiia (Mosk). 2023;9(2):33-42.
24. Liu X, Tang Y, Li Z. In vivo real-time assessment of the anastomotic blood supply in colorectal surgery using confocal laser endomicroscopy in an anastomotic model. Surg Endosc. 2022;36(6):4136-4144.
25. Vargas CR, Nguyen JT, Ashitate Y. Near-infrared imaging for the assessment of anastomotic patency, thrombosis, and reperfusion in microsurgery: a pilot study in a porcine model. Microsurgery. 2015;35(4):309-314.
26. Sun L, Gao J, Wu G. Perfusion outcomes with near-infrared indocyanine green imaging system in laparoscopic total mesorectal excision for mid-rectal or low-rectal cancer (POSTER): a study protocol. BMJ Open. 2024 May 9;14(5):e079858.
27. Dupre ´e A, Rieß H, von Kroge PH, Izbicki JR, Debus ES, Mann O, et al. Intraoperative quality assessment of tissue perfusion with indocyanine green (ICG) in a porcine model of mesenteric ischemia. PLoS ONE. 2021;16(7):e0254144.
28. Yu H, Kirkpatrick IDC. An Update on Acute Mesenteric Ischemia. Can Assoc Radiol J. 2023;74(1):160-171.
29. Yasuyama A, Tei M, Nomura M A. Resected Case of the Sigmoid Colon Cancer after the Endovascular Aneurysm Repair in Which Intraoperative Indocyanine Green Fluorescence Method Was Useful for Evaluating the Blood Flow in the Colon. Gan To Kagaku Ryoho. 2022;49(13):1637-1639.
30. Al-Rashedy M, Mukherjee T, Askari A, Gurjar S. A systematic review of outcomes and quality of life after ileorectal anastomosis for ulcerative colitis. Arab J Gastroenterol. 2023;24(2):79-84.
31. Berghog J, Hermanson M, de la Croix H. Ileo-rectal anastomosis in ulcerative colitis-Long-term outcome, failure and risk of cancer at a tertiary centre. Colorectal Dis. 2022;24(12):1535-1542.
32. Lipnitsky EM, Leontyev AV, Nikolaeva EA. Diagnosis of microcirculation features in intestinal anastomosis to prevent its failure. Khirurgiia (Mosk). 2019;(2):78-81.
33. Nassar A, Challine A, O’Connell L. Effective initial management of anastomotic leak in the maintenance of functional colorectal or coloanal anastomosis. Surg Today. 2023; 53(6):718-727.
34. Alekseev M, Rybakov E, Shelygin Y, Chernyshov S, Zarodnyuk I. A study investigating the perfusion of colorectal anastomoses using fluorescence angiography: results of the FLAG randomized trial. Colorectal Disease. 2020.22(9):1147-1153.
35. Amagai H, Miyauchi H, Muto Y. Clinical utility of transanal indocyanine green nearinfrared fluorescence imaging for evaluation of colorectal anastomotic perfusion. Surg Endosc. 2020;34(12):5283-5293.
36. Morales-Conde S, Alarcón I, Yang T. Fluorescence angiography with indocyanine green (ICG) to evaluate anastomosis in colorectal surgery: where does it have more value? Surg Endosc. 2020;34(9):3897-3907.
37. Roberta Rizzo, Carlo Vallicelli, Luca Ansaloni. Usefulness of fluorescence imaging with indocyanine greenforevaluationofbowelperfusion in the urgency setting: a systematic review and meta-analysis. International Journal of Surgery. 2024;110:5071-5077.
38. Van den Bos J, Al-Taher M, Schols RM, et al. Near-infrared fluorescence imaging for real- time intraoperative guidance in anastomotic colorectal surgery: a systematic review of literature. J Laparoendosc Adv Surg Tech. 2017;28:157-167.
39. Morales-Conde S, Licardie E, Alarcón I, et al. Indocyanine green (ICG) f luorescence guide for the use and indications in general surgery: recommendations basedonthedescriptive reviewof theliterature and the analysis of experience. Cirugia Espanola. 2022;100:534-554.
40. Ishiyama Y, Harada T, Amiki M, et al. Safety and effectiveness of indo cyanine-green fluorescence imaging for evaluating non-occlusive mesen teric ischemia. Asian J Surg. 2022;45:2331-2333.
41. Haruta Y, Nakashima Y, Ikeda T, Oki E, Yoshizumi T. Еvaluation of gastric tube blood flow by multispectral camera and fluorescence angiography. Surg Open Sci. 2024;19:87-94.
42. Gabrielle LeBlanc. The use of indocyanine green (ICYG) angiography intraoperatively to evaluate gastric conduit perfusion during esophagectomy: does it impact surgical decision‑making? Surgical Endoscopy.2023;37:8720-8727.
43. Syed Nusrath Current status of indocyanine greenfluorescent angiography in assessing perfusion of gastric conduit and oesophago-gastric anastomosis. International Journal of Surgery. 2024;110:1079-1089.
44. Tsutsumi R, Ikeda T, Nagahara H, Saeki H, Nakashima Y, Oki E, et al. Efficacy of novel multispectral imaging device to determine anastomosis for esophagogastrostomy. J Surg Res. 2019;242:11-22.
45. Haruta Y, Tsutsumi R, Naotaka K, Nagahara H, Ikeda T. Novel multispectral device for quantitative imaging of tissue oxygen saturation and hemoglobin as surgical navigation device. Surg Oper Room Innov. 2021;10:93-106.
46. Tokumaru S, Kitazawa M, Nakamura S, Koyama M, Soejima Y. Intraoperative visualization of morphological patterns of the thoracic duct by subcutaneous inguinal injection of indocyanine green in esophagectomy for esophageal cancer. Ann Gastroenterol Surg. 2022;6(6):873-879.
47. Casas MA, Angeramo CA, Bras Harriott C, Dreifuss NH, Schlottmann F. Indocyanine green (ICG) fluorescence imaging for prevention of anastomotic leak in totally minimally invasive Ivor Lewis esophagectomy: a systematic review and meta-analysis. Dis Esophagus. 2022;35(4):doab056.
48. Farah A, Tatakis A, Malshy K, Mahajna A, Sayida S. Real-Time Perfusion and Leak Assessment in Bariatric Surgery: Bridging Traditional and Advanced Techniques. Cureus. 2024;16(10):e71919.
49. De Simone B, Abu-Zidan FM, Saeidi S. Knowledge, attitudes and practices of using Indocyanine Green (ICG) fluorescence in emergency surgery: an international web-based survey in the ARtificial Intelligence in Emergency and trauma Surgery (ARIES)-WSES project. Updates Surg. 2024;76(5):1969-1981.
50. Sandor Z, Ujfalusi Z, Varga A. Application of a Selfdeveloped, Low-budget Indocyanine Green Camera in Surgical Imaging - a Single Institution’s Experiences. J Fluoresc. 2023;33(5):2099-2103.
51. The usefulness of indocyanine green fluorescence imaging for intestinal perfusion assessment of intracorporeal anastomosis in laparoscopic colon cancer surgery. Int J Colorectal Dis. 2023;38(1):7.
52. Smolenov EI, Kolobaev IV, Mironova DY, Afonin GV, Ryabov AB. Indocyanine green in delayed esophageal reconstruction after previous extirpation Khirurgiia. 2024;2.2:67-72.
53. Joosten JJ, Gisbertz SS, Heineman DJ. The role of fluorescence angiography in colonic interposition after esophagectomy. Dis Esophagus. 2023;36(5):076.
54. Ladd AD, Zarate Rodriguez J, Lewis D. Low vs Standard- Dose Indocyanine Green in the Identification of Biliary Anatomy Using Near-Infrared Fluorescence Imaging: A Multicenter Randomized Controlled Trial. J Am Coll Surg. 2023;236(4):711-717.
55. Wang Z, Yang X, Mei L. Indocyanine green for targeted imaging of the gall bladder and fluorescence navigation. J Biophotonics. 2022;15(11):e202200142.
56. Esposito C, Alberti D, Settimi A. Indocyanine green (ICG) fluorescent cholangiography during laparoscopic cholecystectomy using RUBINA technology: preliminary experience in two pediatric surgery centers. Surg Endosc. 2021; 35(11):6366-6373.
57. Van den Hoven P, S Weller F, Van De Bent M. Nearinfrared fluorescence imaging with indocyanine green for quantification of changes in tissue perfusion following revascularization. Vascular. 2022;30(5):867-873.
58. Luciano MP, Namgoong JM, Nani RR. A Biliary Tract-Specific Near-Infrared Fluorescent Dye for Image-Guided Hepatobiliary Surgery. Mol Pharm. 2019;16(7):3253-3260.
59. The Use of Indocyanine Green (ICG) and Near-Infrared (NIR) Fluorescence-Guided Imaging in Gastric Cancer Surgery: A Narrative Review. Front. Surg. 2022;9:80773.
60. Lee LD, Hering NA, Zibell M. Near-infrared Fluorescence Imaging for Detecting Pancreatic Liver Metastasis in an Orthotopic Athymic Mouse Model. In Vivo. 2023;37(2):519-523.
61. Schols RM, Connell NJ, Stassen LP. Near-infrared fluorescence imaging for real-time intraoperative anatomical guidance in minimally invasive surgery: a systematic review of the literature. World J Surg. 2015;39(5):1069-1079.
62. Ishizawa T, Hasegawa K, Aoki T, Takahashi M, Inoue Y, Sano K, et al. Neither multiple tumors nor portal hypertension surgical contraindications for hepatocellular carcinoma. Gastroenterology. 2008;134:1908-1916.
63. Mateusiak Ł, Hakuno S, de Jonge-Muller ESM. Fluorescent Nanobodies for enhanced guidance in digestive tumors and liver metastasis surgery. Eur J Surg Oncol. 2024; 51(3):109537.
64. Weixler B, Lobbes LA, Scheiner L. The Value of Indocyanine Green Image-Guided Surgery in Patients with Primary Liver Tumors and Liver Metastases. Life (Basel). 2023;13(6):1290.
65. Onishi S, Kawano T, Nishida N. Case report: Minimal tissue damage and low coagulation liver resection for hepatoblastoma using indocyanine green fluorescence and water-jet dissector. Front Pediatr. 2023;11:1221596.
66. Lee LD, Hering NA, Zibell M. Near-infrared Fluorescence Imaging for Detecting Pancreatic Liver Metastasis in an Orthotopic Athymic Mouse Model. In Vivo. 2023;37(2):519-523.
67. Pio L, Richard C, Zaghloul T. Sentinel lymph node mapping with Indocyanine green fluorescence (ICG) for pediatric and adolescent tumors: a prospective observational study. Sci Rep. 2024.14(1):30135.
68. Lavy D, Shimonovitz M, Keidar D. ICG-guided sentinel lymph node biopsy in melanoma is as effective as blue dye: A retrospective analysis. Surg Oncol. 2024;57:102167.
69. Lakatos L, Illyes I, Budai A. Feasibility of indocyanine green (ICG) fluorescence in ex vivo pathological dissection of colorectal lymph nodes-a pilot study. Pathol Oncol Res. 2024;30:1611853.
70. Thomis S, Ronsse S, Bechter-Hugl B. Relation Between Characteristics of Indocyanine Green Lymphography and Development of Breast Cancer-Related Lymphedema. Lymphat Res Biol. 2024;22(5):248-254.
71. Shirata C. Usefulness of indocyanine green-fluorescence imaging for real-time visualization of pancreas neuroendocrine tumor and cystic neoplasm. J Surg Oncol. 2018. PMID: 30261107.
72. Ghimire R, Limbu Y, Regmee S. Indocyanine green fluorescence imaging: Assessment of perfusion at pancreatic resection margin during pancreatoduodenectomy: A cross sectional study. Health Sci Rep. 2024;7(10):e70153.
73. De Muynck LDAN, White KP, Alseidi A. Consensus Statement on the Use of Near-Infrared Fluorescence Imaging during Pancreatic Cancer Surgery Based on a Delphi Study: Surgeons’ Perspectives on Current Use and Future Recommendations. Cancers (Basel). 2023;15(3):652.
74. Wagner P, Levine EA, Kim AC. Detection of Residual Peritoneal Metastases Following Cytoreductive Surgery Using Pegsitacianine, a pH-Sensitive Imaging Agent: Final Results from a Phase II Study. Ann Surg Oncol. 2024;31(7):4726-4734
75. Leitao MM Jr, Iasonos A, Tomberlin M. ARIA II: a randomized controlled trial of near-infrared Angiography during RectosIgmoid resection and Anastomosis in women with ovarian cancer. Int J Gynecol Cancer. 2024;34(7):1098-1101.
76. Kruiswijk MW, Willems SA, Koning S. Maximal Systolic Acceleration and Near-Infrared Fluorescence Imaging With Indocyanine Green as Predictors for Successful Lower Extremity Revascularization. J Endovasc Ther. 2024:15266028241274568.
77. Koning S, van Kersen J, Tange FP. The impact of diabetes mellitus on foot perfusion measured by ICG NIR fluorescence imaging. Diabetes Res Clin Pract. 2024;214:111772.
78. Tange FP, van den Hoven P, van Schaik J. Near-Infrared Fluorescence Imaging With Indocyanine Green to Predict Clinical Outcome After Revascularization in Lower Extremity Arterial Disease. Angiology. 2024;75(9):884-892.
79. Van Den Hoven P, Tange F, Van Der Valk. Normalization of Time-Intensity Curves for Quantification of Foot Perfusion Using Near-Infrared Fluorescence Imaging With Indocyanine Green. J Endovasc Ther. 2023;30(3):364-371.
80. Jun HS, Lee N, Gil B. Intraoperative Fluorescent Navigation of the Ureters, Vessels, and Nerves during Robot-Assisted Sacrocolpopexy. J Pers Med. 2024;14(8):827.
81. Barba M, Cola A, Frigerio M. Intraoperative Fluorescent Ureter Visualization for Transvaginal High Uterosacral Ligament Suspension for Severe Pelvic Organ Prolapse. Int Urogynecol J. 2024 Jul;35(7):1549-1551.
82. Li Q, Zhang L, Fang F. Research progress of indocyanine green fluorescence technology in gynecological applications. J Gynaecol Obstet. 2024;165(3):936-942.
83. Shimada S, Ohtsubo S, Kusano M. Applications of ICG Fluorescence Imaging for Surgery in Colorectal Cancers. Fluorescence Imaging for Surgeons Cham. Springer, 2015:203-208.
84. Kusano M, Kokudo N, Toi M. ICG Fluorescence Imaging and Navigation Surgery. Tokyo: Springer, 2016. 474 p.
85. Liberale G, Bohlok A, Bormans A. Indocyanine green fluorescence imaging for sentinel lymph node detection in colorectal cancer: A systematic review. European Journal of Surgical Oncology. 2018;44(9):1301-1306.
86. Liberale G, Bourgeois P. Indocyanine green fluorescence-guided surgery after IV injection in metastatic colorectal cancer: A systematic review. European Journal of Surgical Oncology. 2017;43(9):1656-1667.
87. Ris F, Hompes R, Cunningham C. Near-infrared (NIR) perfusion angiography in minimally invasive colorectal surgery. Surgical Endoscopy. 2014;28(7):2221-2226.
88. Van de Bos J, Jongen ACHM, Melenhorst J. Near-infrared fl–uorescence image-guidance in anastomotic colorectal cancer surgery and its relation to serum markers of anastomotic leakage: a clinical pilot study. Surgical Endoscopy. 2019;33(11):3766-3774.
89. Van den Bos J, Al-Taher M, Schols RM. Near-infrared fluorescence imaging for real-time intraoperative guidance in anastomotic colorectal surgery: a systematic review of literature. Journal of Laparoendoscopic & Advanced Surgical Techniques and Videoscopy.2018;28 (2):157-167.
90. Jafati MD, Wexner SD, Martz JE. Perfusion assessment in laparoscopic left-sided/anterior resection (PILLAR II): a multi-institutional study. J. Am. Coll. Surg. 2015;220 (1):82-92.
91. Ottobrini L, Martelli C, Lucignani G. Optical Imaging Agents. Mol. Imaging. 2021:603-625.
92. Pirovano G, Roberts S, Kossatz S, Reiner T. Optical Imaging Modalities: Principles and Applications in Preclinical Research and Clinical Settings. J. Nucl. Med. 2020;61:1419-1427.
93. Yang L, Huang B, Hu S, An Y, Li Y, Wang Y, Gu N. Indocyanine green assembled free oxygen-nanobubbles towards enhanced near-infrared induced photodynamic therapy. Nano Res. 2022;15:4285-4293.
94. Lee EH, Lee MK, Lim SJ. Enhanced stability of indocyanine green by encapsulation in zein-phosphatidylcholine hybrid nanoparticles for use in the phototherapy of cancer. Pharmaceutics. 2021;13:305.
95. Qing W, Xing X, Feng D, Chen R, Liu Z. Indocyanine green loaded pH-responsive bortezomib supramolecular hydrogel for synergistic chemo-photothermal/photodynamic colorectal cancer therapy. Photodiagn. Photodyn. Ther. 2021;36:102521.
96. Ravichandran V, Cao TGN, Choi DG, Kang HC, Shim MS. Non-ionic polysorbate-based nanoparticles for efficient combination chemo/photothermal/photodynamic therapy. J. Ind. Eng. Chem. 2020;88:260-267.
97. Bi Z, Huang L, Han M, Ma J, Wang P. One-pot preparation of small lipid-indocyanine green nanoparticles to induced intracellular oxidative/thermal stress damage for effective colorectal cancer therapy. Micro Nano Lett. 2021;16:636-642.
98. Osterkamp J, Strandby R, Nerup N. Quantitative fluorescence angiography detects dynamic changes in gastric perfusion Surg Endosc. 2021;35(12):6786-6795.
99. Leeuwerke SJG, Vaassen HGM, Meerwaldt R. Indocyanine Green Fluorescence Angiography to Assess Tissue Perfusion Before Common Femoral Artery Aneurysm Ligation After Transfemoral Amputation. EJVES Vasc Forum. 2025;63:41-44.
100. Zhao X, Li S, Song Y, Fan L. Construction of a near infrared fluorescence system for imaging of biological tissues. Sci Rep. 2024;14(1):1626.
101. Wei R, Li Y, Zheng Q, Wang J, Wu Ch, Lu X, Zong Z, et al. Application of indocyanine green fluorescence angiography in laparoscopic sleeve gastrectomy - preliminary results. Langenbecks Arch Surg. 2025;410(1):213.
Рецензия
Для цитирования:
Лелявина Т.А., Корнюшин О.В., Шемилов Р.Р., Маслей В.В., Сонин Д.Л., Папаян Г. В., Г.В., Данилов И.Н., Галагудза М.М. Применение метода флуоресцентной ангиографии с использованием индоцианина зеленого: экспериментальные и клинические исследования. Регионарное кровообращение и микроциркуляция. 2025;24(3):4-12. https://doi.org/10.24884/1682-6655-2025-24-3-4-12
For citation:
Lelyavina T.A., Kornyushin O.V., Shemilov R.R., Masley V.V., Sonin D.L., Papayan G.V., Danilov I.N., Galagudza M.M. Application of Fluorescence Angiography Using Indocyanine Green: Experimental and Clinical Studies. Regional blood circulation and microcirculation. 2025;24(3):4-12. (In Russ.) https://doi.org/10.24884/1682-6655-2025-24-3-4-12






























