Mechanisms of Blood Oxygen Transport and Gasotransmitters System in Primary Open-Angle Glaucoma
https://doi.org/10.24884/1682-6655-2025-24-4-40-47
Abstract
Introduction. Glaucoma is a neurodegenerative disease characterized by the gradual loss of retinal ganglion cells and their axons through apoptosis. Vascular disturbances play a significant role as an underlying cause. Objective. To evaluate the mechanisms of blood oxygen transport and gasotransmitters system in primary open-angle glaucoma (POAG). Materials and Methods. The study included 130 subjects: 100 patients diagnosed with POAG stages I–IV and 30 relatively healthy individuals without glaucoma. Ultrasound examination of the eye and orbit was performed using color Doppler imaging and pulse Doppler velocimetry to assess blood flow parameters in vessels supplying the optic nerve and retina. Choroid thickness was measured by optical coherence tomography. Levels of gasotransmitters (nitric oxide and hydrogen sulfide) and blood oxygen transport function indicators were also determined. Results. Significant reductions in maximum systolic blood flow velocity were observed in POAG: by 26.1% in the ophthalmic artery (p=0.012), 13.3% in the central retinal artery (p=0.047), and 21.7% in the short posterior ciliary arteries (p=0.032). The end-diastolic velocity also decreased, especially in the ophthalmic artery, by 42.9% (p<0.001). The resistive index increased by 7.6% in the ophthalmic artery (p=0.022), and by 4.3% in the central retinal artery and short posterior ciliary arteries (p=0.040 and p=0.048, respectively). Choroid thickness decreased by 14.1% (p<0.001). Gasotransmitter production was disturbed: nitric oxide levels increased by 47.1% (p<0.001) and hydrogen sulfide decreased by 28.0% (p<0.001). Hemoglobin’s affinity for oxygen increased, with the real p50 decreasing by 5.8% (p=0.003) and the standard p50 by 7.9% (p<0.001). Conclusion: Changes in vascular oxygen transport mechanisms, gasotransmitter levels, and blood oxygen-binding properties contribute to ischemic damage of the optic nerve and glaucoma progression.
Keywords
About the Authors
V. V. RomanchukRussian Federation
Romanchuk Vita V. – Senior Lecturer, Department of Otorhinolaryngology and Eye Diseases
80, Gorkogo str., Grodno, 230009
V. V. Zinchuk
Russian Federation
Zinchuk Viktor V. – Doctor of Medical Sciences, Professor, Head, Department of Normal Physiology
80, Gorkogo str., Grodno, 230009
V. L. Krasilnikova
Russian Federation
Krasilnikova Victoria L. – Doctor of Medical Sciences, Professor, Department of Ophthalmology
83, Dzerzhinskogo str., Minsk, 220083
References
1. Engin K., Yemişci B., Bayramoğlu S. et al. Structural and functional evaluation of glaucomatous neurodegeneration from eye to visual cortex using 1.5 T MR imaging: a pilot study. Clinical & Experimental Ophthalmology. 2014;5(3):341. https://doi.org/10.4172/2155-9570.1000341.
2. Kyhn MV, Warfvinge K, Scherfig E, et al. Acute retinal ischemia caused by controlled low ocular perfusion pressure in a porcine model. Electrophysiological and histological characterization. Exp Eye Res. 2009;88(6):1100-1106. https://doi.org/10.1016/j.exer.2009.01.016.
3. Balaratnasingam C, Morgan WH, Bass L, et al. Time-dependent effects of focal retinal ischemia on axonal cytoskeleton proteins. Invest Ophthalmol Vis Sci. 2010;51(6):3019-3028. https://doi.org/10.1167/iovs.09-4692.
4. Romano C, Price MT, Almli T, Olney JW. Excitotoxic neurodegeneration induced by deprivation of oxygen and glucose in isolated retina. Invest Ophthalmol Vis Sci. 1998;39(2):416-423.
5. Gorshunova NK, Mauer SS. Interaction of vasotonic bioeffectors in endothelial dysfunction pathogenesis due to arterial hypertension on aging. Аdvances in gerontology. 2012;25(3):461-467. (In Russ.)].
6. Kornfield TE, Newman EA. Regulation of blood flow in the retinal trilaminar vascular network. J Neurosci. 2014;34(34): 11504-11513. https://doi.org/10.1523/jneurosci.1971-14.2014.
7. Weinreb R, Harris A. Ocular blood flow in glaucoma: the 6th consensus report of the world glaucoma association. Amsterdam: Kugler Publications; 2009. 159 p.
8. Modrzejewska M. Guidelines for ultrasound examination in ophthalmology. Part III: Color Doppler ultrasonography. J Ultrason. 2019;19(77):128-136. https://doi.org/10.15557/jou.2019.0019.
9. Kurysheva NI, Ardzhevnishvili TD, Shatalova EO, et al. The choroid and ocular blood flow in primary open-angle glaucoma associated with age macular degeneration. National Journal glaucoma. 2014;13(2):30-39. (In Russ.)].
10. Guevara I, Iwanejko J, Dembińska-Kieć A, et al. Determination of nitrite/nitrate in human biological material by the simple Griess reaction. Clin Chim Acta. 1998;274(2):177-88. https://doi.org/10.1016/S0009-8981(98)00060-6.
11. Norris EJ, Culberson CR, Narasimhan S, Clemens MG. The liver as a central regulator of hydrogen sulfide. Shock. 2011;36(3):242-250. https://doi.org/10.1097/shk.0b013e3182252ee7.
12. Jonas JB, Wang N, Yang D, et al. Facts and myths of cerebrospinal fluid pressure for the physiology of the eye. Prog Retin Eye Res. 2015;46:67-83. https://doi.org/10.1016/j.preteyeres.2015.01.002.
13. Li F, Huo Y, Ma L, Tang G. Correlation Analysis between Macular Choroidal Thickness and Visual Field Mean Defect in Primary Open-Angle Glaucoma. J Ophthalmol. 2021; 2021(3):5574950. https://doi.org/10.1155/2021/5574950.
14. Dayanir V, Topaloğlu A, Ozsunar Y, et al. Orbital blood flow parameters in unilateral pseudoexfoliation syndrome. Int Ophthalmol. 2009;29(1):27-32. https://doi.org/10.1007/s10792-008-9193-7.
15. Lieberman MF, Maumenee AE, Green WR. Histologic studies of the vasculature of the anterior optic nerve. Am. J. Ophthalmol. 1976;82(3):405-423. https://doi.org/10.1016/0002-9394(76)90489-x.
16. Wang X, Wang M, Liu H, et al. The Association between Vascular Abnormalities and Glaucoma-What Comes First? Int J Mol Sci. 2023;24(17):13211. https://doi.org/10.3390/ijms241713211.
17. Fan X, Ying Y, Zhai R, et al. The Characteristics of Fundus Microvascular Alterations in the Course of Glaucoma: A Narrative Review. Ann Transl Med. 2022;10(9):527. https://doi.org/10.21037/atm-21-5695.
18. Banou L, Dastiridou A, Giannoukas A, et al. The Role of Color Doppler Imaging in the Diagnosis of Glaucoma: A Review of the Literature. Diagnostics (Basel). 2023;13(4):588. https://doi.org/10.3390/diagnostics13040588.
19. Newman EA. Functional hyperemia and mechanisms of neurovascular coupling in the retinal vasculature. J Cereb Blood Flow Metab. 2013;33(11):1685-1695. https://doi.org/10.1038/jcbfm.2013.145.
20. Costa VP, Harris A, Anderson D, et al. Ocular Perfusion Pressure in Glaucoma. Acta Ophthalmol. 2014;92(4):e252-e266. https://doi.org/10.1111/aos.12298.
21. Zheng Y, Wong TY, Mitchell P, et al. Distribution of Ocular Perfusion Pressure and Its Relationship with Open-Angle Glaucoma: The Singapore Malay Eye Study. Invest Ophthalmol Vis Sci. 2010;51(7):3399-3404. https://doi.org/10.1167/iovs.09-4867.
22. Stefánsson E, Olafsdottir OB, Eliasdottir TS, et al. Retinal Oximetry: Metabolic Imaging for Diseases of the Retina and Brain. Prog Retin Eye Res. 2019;70:1-22. https://doi.org/10.1016/j.preteyeres.2019.04.001.
23. Reina-Torres E, De Ieso ML, Pasquale LR, et al. The vital role for nitric oxide in intraocular pressure homeostasis. Prog Retin Eye Res. 2021;83:100922. https://doi.org/10.1016/j.preteyeres.2020.100922.
24. Zinchuk VV, Glutkina NV. Hemoglobin affinity to oxygen during coronavirus infection: new faces of a known problem. Russian journal of physiology. 2023;109(12):1780-1798. (In Russ.)]. https://doi.org/10.31857/S0869813923120178.
25. Wang R, Li K, Wang H, et al. Endogenous CSE/Hydrogen Sulfide System Regulates the Effects of Glucocorticoids and Insulin on Muscle Protein Synthesis. Oxid Med Cell Longev. 2019;2019:9752698. https://doi.org/:10.1016/j.niox.2017.09.006
26. Kolluru GK, Prasai PK, Kaskas AM, et al. Oxygen tension, H2S, andNO bioavailability: is there an interaction? J Appl Physiol. 2016;120(2):263-270. https://doi.org/10.1152/japplphysiol.00365.2015
27. Lukjanova LD. Sovremennye problemy gipoksii: Nauchnye obzory i soobshhenija, po materialam 2-j Vserossijskoj konferencii “Gipoksija: mehanizmy, adaptacija, korrekcija”. Annals of the Russian academy of medical sciences. 2000;11:3-12. (In Russ.)].
28. Zinchuk VV, Bileckaja ES. Osobennosti vlijanija ozona na kislorodzavisimye processy krovi pri gipoksicheskih uslovijah. Regionarnoe krovoobrashhenie i mikrocirkuljacija. 202;20(3):70–76. (In Russ.)]. https://doi.org/10.24884/1682-6655-2021-20-3-70-76.
29. Lee S, Park CY. Nitric oxide: an old drug but with new horizons in ophthalmology-a narrative review. Ann Transl Med. 2023;11(10):352. https://doi.org/10.21037/atm-22-5634.
30. Tanna AP, Johnson M. Rho Kinase Inhibitors as a Novel Treatment for Glaucoma and Ocular Hypertension. Ophthalmology. 2018;125(11):1741–1756. https://doi.org/10.1016/j.ophtha.2018.04.040.
31. Bush L, Robinson J, Okolie A, et al. Neuroprotective Actions of Hydrogen Sulfide-Releasing Compounds in Isolated Bovine Retinae. Pharmaceuticals (Basel). 2024;17(10):1311. https://doi.org/10.3390/ph17101311.
32. Feng Y, Prokosch V, Liu H. Current Perspective of Hydrogen Sulfide as a Novel Gaseous Modulator of Oxidative Stress in Glaucoma. Antioxidants (Basel). 2021;10(5):671. https://doi.org/10.3390/antiox10050671.
Review
For citations:
Romanchuk V.V., Zinchuk V.V., Krasilnikova V.L. Mechanisms of Blood Oxygen Transport and Gasotransmitters System in Primary Open-Angle Glaucoma. Regional blood circulation and microcirculation. 2025;24(4):40-47. (In Russ.) https://doi.org/10.24884/1682-6655-2025-24-4-40-47
JATS XML






























