Preview

Regional blood circulation and microcirculation

Advanced search

Comparative evaluation of mesenchymal stem cells cultivation methods on biodegradable L-polylactide scaffold for the creation of tissue-engineered vascular implant

https://doi.org/10.24884/1682-6655-2018-17-1-61-68

Abstract

Cell integration and cultivation on the matrix are the key processes in the development of a tissue-engineered vascular implant (TEVI) based on a biodegradable polymer scaffold. The aim of this researh is to identify the optimal method of mesenchymal stem cells cultivation on the tubular biodegradable scaffold from L-polylactide. The comparative evaluation of the static and dynamic cultivation methods was performed. Proposed method of combining filtration method of cell integration and dynamic cultivation has proved its higher efficiency and is suitable for further development of TEVI.

About the Authors

G. I. Popov
Pavlov First Saint Petersburg State Medical University
Russian Federation


A. E. Kryukov
Institute of Macromolecular Compounds, Russian Academy of Sciences; Peter the Great Saint-Petersburg State Polytechnical University
Russian Federation


Yu. A. Nashchekina
Peter the Great Saint-Petersburg State Polytechnical University; Institute of Cytology of the Russian Academy of Science
Russian Federation


E. M. Ivankova
Institute of Macromolecular Compounds, Russian Academy of Sciences; Peter the Great Saint-Petersburg State Polytechnical University
Russian Federation


V. N. Vavilov
Pavlov First Saint Petersburg State Medical University
Russian Federation


V. E. Yudin
Institute of Macromolecular Compounds, Russian Academy of Sciences; Peter the Great Saint-Petersburg State Polytechnical University
Russian Federation


P. V. Popryadukhin
Institute of Macromolecular Compounds, Russian Academy of Sciences; Peter the Great Saint-Petersburg State Polytechnical University
Russian Federation


G. Yu. Yukina
Pavlov First Saint Petersburg State Medical University
Russian Federation


N. V. Smirnova
Institute of Macromolecular Compounds, Russian Academy of Sciences; Peter the Great Saint-Petersburg State Polytechnical University
Russian Federation


References

1. Покровский А. В., Ивандаев А. С. Ежегодный отчет Российского общества ангиологов и сосудистых хирургов. Состояние сосудистой хирургии в России в 2016 году. - М., 2017. [Pokrovsky A.V, Ivandaev A.S. Annual report ofthe Russian Society of Angiologists and Vascular Surgeons. The state of vascular surgery in Russia in 2016. Moscow, 2017 (In Russ)].

2. Ahsan T, Nerem R. Bioengineered tissues: the science, the technology, and the industry. Orthod. Craniofac. 2005;8(3):134-140. doi: 10.1111/j.1601-6343.2005.00326.x.

3. Harskamp R, Lopes R, Baisden C, de Winter R, Alexander J. Saphenous Vein Graft Failure After Coronary Artery Bypass Surgery. Ann. Surg. 2013;257(5):824-833. doi:10.1097/sla.0b013e318288c38d.

4. Hashi C, Zhu Y, Yang G et al. Antithrombogenic property of bone marrow mesenchymal stem cells in nanofibrous vascular grafts. Proc. Natl. Acad. Sci. 2007;104(29):11915-11920. doi: 10.1073/pnas.0704581104.

5. Kannan R, Salacinski H, Butler P, Hamilton G, Seifalian A. Current status of prosthetic bypass grafts: A review. J Biomed Mater Res B Appl Biomater. 2005;74B(1):570-581. doi: 10.1002/jbm.b.30247.

6. Kim F, Marhefka G, Ruggiero N, Adams S, Whellan D. Saphenous Vein Graft Disease. Cardiol Rev. 2013;21(2):101-109. doi: 10.1097/crd.0b013e3182736190.

7. Langer R, Vacanti J. Tissue engineering. Science. 1993;260(5110):920-926. doi: 10.1126/science.8493529.

8. L'Heureux N, Dusserre N, Marini A, Garrido S, de la Fuente L, McAllister T. Technology Insight: the evolution of tissue-engineered vascular grafts - from research to clinical practice. Nat. Clin. Pract. Cardiovasc. Med. 2007;4(7):389-395. doi: 10.1038/ncpcardio0930.

9. Pawlowski K. Endothelial cell seeding of polymeric vascular grafts. Front Biosci. 2004;9(1-3):1412. doi: 10.2741/1302.

10. Pei M. Bioreactors mediate the effectiveness of tissue engineering scaffolds. FASEB J. 2002. doi: 10.1096/fj.02-0083fje.

11. Popryadukhin P, Popov G, Yukina G et al. Tissue-Engineered Vascular Graft of Small Diameter Based on Electrospun Polylactide Microfibers. Int J Biomater. 2017;2017:1-10. doi: 10.1155/2017/9034186.

12. World health statistics 2016: monitoring health for the SDGs, sustainable development goals. World Health Organization. Geneva, WHO Press, 2016:64-121.

13. Yow K, Ingram J, Korossis S, Ingham E, Homer-Vanniasinkam S. Tissue engineering of vascular conduits. Br. J. Surg 2006;93(6):652-661. doi:10.1002/bjs.5343.

14. Zhu M, Heydarkhan-Hagvall S, Hedrick M, Benhaim P, Zuk P. Manual Isolation of Adipose-derived Stem Cells from Human Lipoaspirates. J. Vis. Exp. 2013;79. doi:10.3791/50585.


Review

For citations:


Popov G.I., Kryukov A.E., Nashchekina Yu.A., Ivankova E.M., Vavilov V.N., Yudin V.E., Popryadukhin P.V., Yukina G.Yu., Smirnova N.V. Comparative evaluation of mesenchymal stem cells cultivation methods on biodegradable L-polylactide scaffold for the creation of tissue-engineered vascular implant. Regional blood circulation and microcirculation. 2018;17(1):61-68. (In Russ.) https://doi.org/10.24884/1682-6655-2018-17-1-61-68

Views: 784


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-6655 (Print)
ISSN 2712-9756 (Online)