Preview

Регионарное кровообращение и микроциркуляция

Расширенный поиск

Кардиопротекторные эффекты производных гетероциклических аминокислот и 5-гидроксиникотиновой кислоты при доксорубицин-индуцированной кардиомиопатии

https://doi.org/10.24884/1682-6655-2018-17-1-90-96

Полный текст:

Аннотация

Введение. Поиск новых соединений с кардиопротективной активностью среди производных гетероциклических аминокислот и 5-гидроксиникотиновой кислоты представляется перспективным. Цель работы - изучить кардиопротективные эффекты выбранных соединений. Материал и методы. Моделирование кардиомиопатии проводили путем введения доксорубицина (20 мг/кг), через 48 ч проводили оценку показателей сократимости левого желудочка в условиях высокого ритма сокращений 480 уд./мин в минуту в течение 15 с на фоне увеличения концентрации Са2+ до 5 ммоль в перфузате. В качестве критерия оценки кардиопротекторного действия фармакологических средств использовали коэффициент StTTI. Результаты исследования. Субстанции проявляют кардиопротективный эффект, что выражается в снижении скорости коронарной перфузии и коэффициента диастолической дисфункции (StTTI). Выводы. Изучаемые производные снижают диастолическую дисфункцию, уменьшают необратимые повреждения кардиомиоцитов.

Об авторах

Л. М. Даниленко
Белгородский государственный национальный исследовательский университет, НИУ «БелГУ»
Россия


М. В. Покровский
Белгородский государственный национальный исследовательский университет, НИУ «БелГУ»
Россия


А. П. Довгань
Белгородский государственный национальный исследовательский университет, НИУ «БелГУ»
Россия


П. Д. Колесниченко
Белгородский государственный национальный исследовательский университет, НИУ «БелГУ»
Россия


А. С. Тимохина
Белгородский государственный национальный исследовательский университет, НИУ «БелГУ»
Россия


А. С. Котельникова
Белгородский государственный национальный исследовательский университет, НИУ «БелГУ»
Россия


Список литературы

1. Гуманова Н. Г., Артюшкова Е. Б., Метельская В. А. и др. Влияние антиоксидантов Q510 и резвератрола на регуляторную функцию эндотелия у крыс с моделированной артериальной гипертонией // Бюллетень экспериментальной биологии и медицины. - 2007. - Т. 143. - № 6. - С. 678-681 [Gumanova NG, Artyushkova EB, Metel'skaya VA, et al. Effect of antioxidants p Q510 and resveratrol on regulatory function of the endothelium in rats with modeled arterial hypertension. Bulletin of Experimental Biology and Medicine. 2007; 143 (6):678-681. doi: 10.1007/s10517-007-0212-x (In Russ)].

2. Корокин М. В., Пашин Е. Н., Бобраков К. Е. и др. Изучение эндотелиопротекторного и коронарного действия 3-оксипиридина // Кубанский научный медицинский вестник. - 2009. - № 4. - С. 104-108 [Korokin MV, Pashin EN, Bevabakov KE, et al. Studying endothelioprotection and coronary action of derivatives 3-oksipiridin. Kuban Research Medical Bulletin. 2009;(4):104-108 (In Russ)].

3. Матяш М. Г., Кравчук Т. Л., Высоцкая В. В. и др. Индуцированная антрациклинами кардиотоксичность: механизмы развития и клинические проявления // Сибирский онкологический журнал. - 2008. - № 6. - C. 66-75 [Matyash MG, Kravchuk TL, Vysotskaya VV, et al. Anthracycline-induced cardiotoxicity: mechanisms of development and clinical manifestations. Siberian Oncological Journal. 2008;(6):66-75 (In Russ)].

4. Скачилова С. Я., Кесарев О. Г., Даниленко Л. М. и др. Фармакологическая коррекция L-NAME индуцированного дефицита оксида производными 3-(2,2,2-триметилгидразиния) пропионата // Научный результат: Фармакология и клиническая фармакология. - 2016. - Т. 2. - № 1. - С. 36-41 [Skachilova SY, Kesarev OG, Danilenko LM. Pharmacological correction of L-NAME-induced oxide deficiency with derivatives of 3-(2,2,2-trimethylhydrazinium) propionate. Research result: pharmacology and clinical pharmacology. 2016;2(1):36-41. doi: 10.17816/pavlovj2015435-38 (In Russ)].

5. Тарасова А. П., Даниленко Л. М., Татаренкова И. А. и др. Оценка кардиопротекторных эффектов инкретиномиметиков эксенатида и вилдаглиптина в эксперименте // Научный результат: Фармакология и клиническая фармакология. - 2017. - Т. 3. - № 2. - С. 57-63 [Tarasova AP, Danilenko LM, Tatarenkova IA, et al. Evaluation of cardioprotective effects of the incritinmimetics exenatideand vildagliptin in the experiment. Research Journal of Pharmaceutical, Biological and Chemical Sciences 2017; 3(2):57-63. doi: 10.18413/2313-8971-2017-3-2-57-63 (In Russ)].

6. Фролова О. Г., Гладченко М. П., Артюшкова Е. Б. и др. Проблема кардиотоксичности цисплатина и возможности преодоления с использованием иммобилизованной формы цисплатина и цитопротектора // Современные проблемы науки и образования. - 2016. - № 5. URL: https://science-education.ru/ru/article/view?id=25319 [Frolova OG, Gladchenko MP, Artyushkova EB, et al. The problem of cardiac toxicity of cisplatin and the possibility of overcoming with the use of an immobilized form of cisplatin and a cytoprotector. Modern problems of science and education. URL: https://science-education.ru/ru/article/view?id=25319. 2016;(5) (In Russ)].

7. Цепелева С. А., Покровский М. В., Покровская Т. Г. и др. Кардио- и эндотелиопротективные эффекты ингибитора аргиназы L-норвалина при моделировании L-NAME индуцированного дефицита оксида азота // Кубанский научный медицинский вестник. - 2011. - № 4. - С. 185-188 [Tsepeleva SA, Pokrovskii MV, Pokrovskaya TG, et al. Cardio- and endotelioprotective effects of arginase inhibitor L-norvalin at modelling L-NAME indused deficiency of nitric oxide. Kuban Research Medical Bulletin. 2011;4:185-188 (In Russ).]

8. Черноморцева Е. С., Покровский М. В., Покровская Т. Г. и др. Экспериментальное изучение кардиопротекторного и эндотелиопротекторного действия макралидов и азолидов // Экспериментальная и клиническая фармакология. - 2009. - Т. 72. - № 2. - С. 29-31 [Chernomortseva ES, Pokrovskii MV, Pokrovskaia TG, et al. Experimental study of cardioprotective and endothelioprotective action of macrolides and azalides. Experimental and clinical pharmacology. 2009;72(2):29-31 (In Russ)].

9. Armstrong SC. Anti-oxidants and apoptosis: attenuation of doxorubicin induced cardiomyopathy by carvedilol. J. Mol. Cell. Cardiol. 2004;37:817-821. doi: 10.1016/j.yjmcc.2004.07.001.

10. Corna G., Santambrogio P., Minotti G., Cairo G. Doxorubicin paradoxically protects cardiomyocytes against iron-mediated toxicity: role of reactive oxygen species and ferritin. J. Biol. Chem. 2004;279:13738-13745. doi: 10.1074/jbc.m310106200.

11. Danilenko LM, Pokrovskii MV. 3-(2,2,2-trimethylhydrazinium) propionate: new concept of realization of cardioprotective effect. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2014;5(6):1419-1422. doi: 10.17816/pavlovj2015435-38.

12. Keizer HG, Pinedo HM, Schuurhuis GJ, Joenje H. Doxorubicin (Adriamycin): A Critical Review of Free Radical-Dependent Mechanisms of Cytotoxicity. Pharmacol Ther. 2000;47:219-231. doi: 10.1016/0163-7258(90)90088-j.

13. Kochkarov VI, Molchanova OV, Pokrovskii MV, et al. Endothelium-protective action of thioctic acid and rosuvastatin combination at concomitant hypoestrogen and L-NAME-induced deficit of nitric oxide. Research Journal of Pharmaceutical Biological and Chemical Sciences. 2014;5(5):1054-1057.

14. Lebrecht D, Geist A, Ketelsen UP et al. Dexrazoxane prevents doxorubicin-induced long-term cardiotoxicity and protects myocardial mitochondria from genetic andfunctional lesions in rats. Br. J. Pharmacol. 2007;151:771-778. doi: 10.1038/sj.bjp.0707294.

15. Machado V, Cabral A, Monteiro P et al. Carvedilol as a protector against the cardiotoxicity induced by anthracyclines (doxorubicin). Rev. Port. Cardiol. 2008;27:1277-1296.

16. Матяш М. Г., Кравчук Т. Л., Высоцкая В. В. и др. Не-антрациклиновая кардиотоксичность // Сибирский онкологический журнал. - 2009. - № 5. - C. 73-82 [Matjash MG, Kravchuk TL, Vysockaja VV, et al. Neantraciklinovaja kardiotoksichnost. Sibirskij onkologicheskij zhurnal. 2009;5:73-82 (In Russ)].

17. Minotti G, Menna P Salvatorelli E et al. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol. Rev. 2004;56:185-229. doi: 10.1124/pr.56.2.6.

18. Mukhopadhyay P, Rajesh M, Batkai S et al. Role of superoxide, nitric oxide, and peroxynitrite in doxorubicin-induced cell death in vivo and in vitro. Am. J. Physiol. Heart Circ. Physiol. 2009;296:1466-1483. doi: 10.1152/ajpheart.00795.2008.

19. Noyan-Ashraf MH, Momen MA, Ban K et al. GLP-1R agonist liraglutide activates cytoprotective pathways and improves outcomes after experimental myocardial infarction in mice. Diabetes. 2009;58(4):975-983. doi: 10.2337/db08-1193.

20. Octavia Y, Tocchetti CG, Gabrielson KL et al. Doxorubicin-induced cardiomyopathy: from molecular mechanisms to therapeutic strategies. J. Mol. Cell. Cardiol. 2012;52(6):1213-1225. doi: 10.1016/j.yjmcc.2012.03.006.

21. Ohkawa H, Ohidhi N., Yagi K. Assay for peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979;95:351-358. doi: 10.1016/0003-2697(79)90738-3.

22. Popelova O, Sterba, M, Simunek T. et al. Deferiprone does not protect against chronic anthracycline cardiotoxicity in vivo. Pharmacol Exp.Ther. 2008;326(1):259-269. doi: 10.1124/jpet.108.137604.

23. Quiles JL, Huertas JR, Battino M. et al. Antioxidant nutrients and adriamycin toxicity. Toxicology. 2002;180:7995. doi: 10.1016/s0300-483x(02)00383-9.

24. Simunek T, Sterba M, Popelova O, et al. Anthracycline-induced cardiotoxicity: overview of studies examining the roles of oxidative stress and free cellular iron. Pharmacol Rep. 2009;61(1):154-71. doi: 10.1016/s1734-1140(09)70018-0.

25. Spallarossa P, Garibaldi S, Altieri P et al. Carvedilol prevents doxorubicin-induced free radical release and apoptosis in cardiomyocytes in vitro. J. Mol. Cell. Cardiol. 2004;37:837-846. doi: 10.1016/j.yjmcc.2004.05.024.

26. Vavrova A, Popelov6 O, Sterba M et al. In vivo and in vitro assessment of the role of glutathione antioxidant system in anthracycline-induced cardiotoxicity. Arch Toxicol. 2011;85(5):525-535. doi: 10.1007/s00204-010-0615-8.

27. Vivenza D, Feola M, Garrone O et al. Role of the renin-angiotensin-aldosterone system and the glutathione S-transferase Mu, Pi and Theta gene polymorphisms in cardiotoxicity after anthracycline chemotherapy for breast carci noma. Int J Biol Markers. 2013;28(4):336-347. doi: 10.5301/ jbm.5000041.

28. Vives-Bauza C. PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci U S A. 2010;107(1):378-383. doi: 10.1073/pnas.0911187107.

29. Zhang YW, Shi J, Li YJ, Wei L. Cardiomyocyte death in doxorubicin-induced cardiotoxicity. Arch. Immunol. Ther. Exp. 2009;57(6):435-445. doi: 10.1007/s00005-009-0051-8.


Для цитирования:


Даниленко Л.М., Покровский М.В., Довгань А.П., Колесниченко П.Д., Тимохина А.С., Котельникова А.С. Кардиопротекторные эффекты производных гетероциклических аминокислот и 5-гидроксиникотиновой кислоты при доксорубицин-индуцированной кардиомиопатии. Регионарное кровообращение и микроциркуляция. 2018;17(1):90-96. https://doi.org/10.24884/1682-6655-2018-17-1-90-96

For citation:


Danilenko L.M., Pokrovsky M.V., Dovgan A.P., Kolesnichenko P.D., Timokhina A.S., Kotelnikova A.S. Cardioprotective effects of derivatives of heterocyclic amino acids and 5-hydroxynicotinic acid in doxorubicin-induced cardiomyopathy. Regional blood circulation and microcirculation. 2018;17(1):90-96. (In Russ.) https://doi.org/10.24884/1682-6655-2018-17-1-90-96

Просмотров: 105


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1682-6655 (Print)