Preview

Regional blood circulation and microcirculation

Advanced search

Neuroprotective activity of orexin system in ischemic stroke

https://doi.org/10.24884/1682-6655-2018-17-2-4-11

Abstract

The protective potential of orexin system is a field of interest in the search of the new methods to diminish brain damage in ischemic stroke. The cytoprotective potential of orexins in hypoxic damage is associated with their antioxidant, anti-inflammatory and anti-apoptotic properties and with their ability to activate proliferation and normalize metabolism. Even though today little is known about the role of orexins in memory and pain in ischemic stroke, the common features of the pathogenesis of these disruptions and the mechanisms of orexin-associated protection could suggest the opportunity to use of orexins for correction of these complications following ischemic stroke. Further studies of the orexin-associated neuroprotection could become the further step on the way to the new therapeutic approaches in ischemic stroke.

About the Authors

I. A. Filchenko
Federal State Budgetary Educational Institution of Higher Education «Pavlov First Saint Petersburg State Medical University»; Sechenov institute of evolutionary physiology and biochemistry Russian academy of sciences; Federal State Budgetary Institution «Almazov National Medical Research Centre» of the Ministry of Health of the Russian Federation
Russian Federation


Yu. V. Sviryaev
Sechenov institute of evolutionary physiology and biochemistry Russian academy of sciences; Federal State Budgetary Institution «Almazov National Medical Research Centre» of the Ministry of Health of the Russian Federation
Russian Federation


T. D. Vlasov
Federal State Budgetary Educational Institution of Higher Education «Pavlov First Saint Petersburg State Medical University»; Federal State Budgetary Institution «Almazov National Medical Research Centre» of the Ministry of Health of the Russian Federation
Russian Federation


References

1. Литвинова М. А. Инсульт: современные тенденции развития и профилактическая работа врача // Здоровье и образование в ХХI в.: электрон. науч.-образоват. вест. - 2017. - № 5 (19). - C. 20-23. [Litvinova MA. Insult: sovremennye tendentsii razvitiya i profilakticheskaya rabota vracha. Elektronnyi nauchno-obrazovatel’nyi vestnik «Zdorov’e i obrazovanie v XXI veke.» 2017;19(5):20-23 (In Russ.)].

2. Allen CL, Bayraktutan U. Oxidative stress and its role in the pathogenesis of ischaemic stroke. Int J Stroke. 2009;4(6):461-470. doi:10.1111/j.1747-4949.2009.00387.x.

3. Ankarcrona M, Dypbukt JM, Bonfoco E et al. Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrialfunction. Neuron. 1995;15(4):961-973. doi: 10.1016/0896-6273(95)90186-8.

4. Anrather J, Iadecola C. Inflammation and Stroke: An Overview. Neurotherapeutics. 2016;13(4):661-670. doi: 10.1007/s13311-016-0483-x.

5. Butterick TA, Nixon JP, Billington CJ, Kotz CM. Orexin A decreases lipid peroxidation and apoptosis in a novel hypothalamic cell model. Neurosci Lett. 2012;524(1):30-34. doi: 10.1016/j.neulet.2012.07.002.

6. Chieffi S, Carotenuto M, Monda V et al. Orexin system: the key for a healthy life. Front Physiol. 2017;8:1-9. doi: 10.3389/fphys.2017.00357.

7. Date Y, Ueta Y, Yamashita H et al. Orexins, orexigenic hypothalamic peptides, interact with autonomic, neuroendocrine and neuroregulatory systems. Proc Natl Acad Sci. 1999;96(2):748-753. doi: 10.1073/pnas.96.2.748.

8. Deadwyler SA, Porrino L, Siegel JM, Hampson RE. Systemic and nasal delivery of orexin-A (hypocretin-1) reduces the effects of sleep deprivation on cognitive performance in nonhuman primates. J Neurosci. 2007;27(52):14239-14247. doi: 10.1523/JNEUROSCI.3878-07.2007.

9. Dohi K, Nishino S, Nakamachi T et al. CSF orexin A concentrations and expressions of the orexin-1 receptor in rat hippocampus after cardiac arrest. Neuropeptides. 2006;40(4):245-250. doi: 10.1016/j.npep.2006.06.003.

10. Dohi K, Ripley B, Fujiki N et al. CSF orexin-A/hypocretin-1 concentrations in patients with intracerebral hemorrhage (ICH). Regul Pept. 2008;145(1-3):60-64. doi: 10.1016/j.regpep.2007.08.005.

11. Duffy CM, Nixon JP, Butterick TA. Orexin A attenuates palmitic acid-induced hypothalamic cell death. Mol Cell Neurosci. 2016;(75):93-100. doi: 10.1016/j.mcn.2016.07.003.Orexin.

12. Esmaeili-Mahani S, Vazifekhah S, Pasban-Aliabadi H, Abbasnejad M, Sheibani V. Protective effect of orexin-A on 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y human dopaminergic neuroblastoma cells. Neurochem Int. 2013;63(8):719-725. doi: 10.1016/j.neuint.2013.09.022.

13. Feng Y, Liu T, Li X et al. Neuroprotection by Orexin-A via HIF-1a induction in a cellular model of Parkinson’s disease. Neurosci Lett. 2014;579:35-40. doi: 10.1016/j.neulet.2014.07.014.

14. Hadadianpour Z, Fatehi F, Ayoobi F, Kaeidi A, Shamsi- zadeh A, Fatemi I. The effect of orexin-A on motor and cognitive functions in a rat model of Parkinson’s disease. Neurol Res. 2017;39(9):845-851. doi: 10.1080/01616412. 2017. 1352185.

15. Haghparast A, Yazdi-Ravandi S, Razavi Y, Haghparast A, Goudarzvand M. Orexin A induced antinociception in the ventral tegmental area involves D1 and D2 receptors in the nucleus accumbens. Pharmacol Biochem Behav. 2014;126:1-6. doi: 10.1016/j.pbb.2014.08.009.

16. Harada S, Fujita-Hamabe W, Tokuyama S. Effect of orexin-A on post-ischemic glucose intolerance and neuronal damage. J Pharmacol Sci. 2011;115(2):155-163. doi: 10.1254/jphs.10264FP.

17. Harada S, Nozaki Y, Matsuura W, Yamazaki Y, Tokuyama S. Cerebral ischemia-induced elevation of hepatic inflammatory factors accompanied by glucose intolerance suppresses hypothalamic orexin-A-mediated vagus nerve activation. Brain Res. 2017;1661:100-110. doi: 10.1016/j.brainres.2017.02.018.

18. Harada S, Yamazaki Y, Koda S, Tokuyama S. Hepatic branch vagus nerve plays a critical role in the recovery of postischemic glucose intolerance and mediates a neuroprotective effect by hypothalamic orexin-A. PLoS One. 2014;9(4):1-11. doi: 10.1371/journal.pone.0095433.

19. Harada S, Yamazaki Y, Nishioka H, Tokuyama S. Neuroprotective effect through the cerebral sodium-glucose transporter on the development of ischemic damage in global ischemia. Brain Res. 2013:1-8. doi: 10.1016/j.brainres.2013.09.041.

20. Harada S, Yamazaki Y, Tokuyama S. Orexin-A suppresses postischemic glucose intolerance and neuronal damage through hypothalamic brain-derived neurotrophicfactor. J Pharmacol Exp Ther. 2013;344(1):276-285. doi: 10.1124/jpet.112.199604.

21. Ho Y-C,Lee H-J, Tung L-W et al. Activation oforexin 1 receptors in the periaqueductal gray of male rats leads to antinociception via retrograde endocannabinoid (2-arachidonoylglycerol)-induced disinhibition. J Neurosci. 2011;31(41):14600-14610. doi: 10.1523/JNEUROSCI.2671-11.2011.

22. Jaeger LB, Farr SA, Banks WA, Morley JE. Effects of orexin-A on memory processing. Peptides. 2002;23(9):1683-1688. doi: 10.1016/S0196-9781(02)00110-9.

23. Kernan WN, Viscoli CM, Inzucchi SE et al. Prevalence ofabnormal glucose tolerance following a transient ischemic attack or ischemic stroke. Arch Intern Med. 2005;165:227-233. doi: 10.1001/archinte.165.2.227.

24. Kim JS. Pharmacological management of central poststroke pain: a practical guide. CNS Drugs. 2014;28(9):787-797. doi: 10.1007/s40263-014-0194-y.

25. Kim M, Park H, Kim S et al. Angiogenic role of orexin-A via the activation of extracellular signal-regulated kinase in endothelial cells. Biochem Biophys Res Commun. 2010;403(1):59-65. doi: 10.1016/j.bbrc.2010.10.115.

26. Kim TJ, Lee JS, Hong JM, Lim YC. Intracerebral steal phenomenon: A potential mechanism for contralateral stroke after carotid artery stenting. Neurologist. 2012;18(3):128-129. doi: 10.1097/NRL.0b013e318253f8b5.

27. Kitamura E, Hamada J, Kanazawa N et al. The effect of orexin-A on the pathological mechanism in the rat focal cerebral ischemia. Neurosci Res. 2010;68(2):154-157. doi: 10.1016/j.neures.2010.06.010.

28. Kotan D, Deniz O, Aygul R, Yildirim A. Acute cerebral ischaemia: relationship between serum and cerebrospinal fluid orexin-A concentration and infarct volume. J Int Med Res. 2013;41(2):404-409. doi: 10.1177/0300060513477002.

29. Li F, Yao C, Yao L, Huo Z, Liu J. Study on the effects of parecoxib on hypothalamus orexin neuron of cerebral infarction rats. Eur Rev Med Pharmacol Sci. 2018;(22):1499-1505.

30. Lim C, Alexander MP. Stroke and episodic memory disorders. Neuropsychologia. 2009;47(14):3045-3058. doi: 10.1016/j.neuropsychologia.2009.08.002.

31. Marcus JN, Aschkenasi CJ, Lee CE et al. Differential expression of orexin receptors 1 and 2 in the rat brain. J Comp Neurol. 2001;435(1):6-25. doi: 10.1002/cne.1190.

32. Marjan B, Hosseinzadeh H. A review of the role of orexin system in pain modulation. Biomed Pharmacother. 2017;90:187-193. doi: 10.1016/j.biopha.2017.03.053.

33. Mavanji V, Butterick TA, Duffy CM, Nixon JP, Billington CJ, Kotz CM. Orexin/hypocretin treatment restores hippocampal-dependent memory in orexin-deficient mice. Neurobiol Learn Mem. 2017;(146):21-30. doi: 10.1016/j.nlm.2017.10.014.Orexin/hypocretin.

34. Mobarakeh JI, Takahashi K, Sakurada S et al. Enhanced antinociception by intracerebroventricularly and intrathecally-administered orexin A and B (hypocretin-1 and -2) in mice. Peptides. 2005;26(5):767-777. doi: 10.1016/j.peptides.2005.01.001.

35. Nakamachi T, Endo S, Ohtaki H et al. Orexin-1 receptor expression after global ischemia in mice. Regul Pept. 2005;126:49-54. doi: 10.1016/j.regpep.2004.08.037.

36. Ogawa Y, Kanda T, Vogt K, Yanagisawa M. Anatomical and electrophysiological development of the hypothalamic orexin neurons from embryos to neonates. J Comp Neurol Res Syst Neurosci. 2017;525(18):3809-3820. doi: 10.1002/cne.24261.

37. Organisation WH. The top 10 causes of death. Top 10 causes of death worldwide. Available at: http://www.who.int/ mediacentre/factsheets/fs310/en/. Published 2017.

38. Pasban-Aliabadi H, Esmaeili-Mahani S, Abbasnejad M. Orexin-A protects human neuroblastoma SH-SY5Ycells against 6-hydroxydopamine-induced neurotoxicity: involvement of PKC and PI3K signaling pathways. Rejuvenation Res. 2017;20(2):125-133. doi: 10.1089/rej.2016.1836.

39. Perez MV, Pavlovic A, Shang C et al. Systems genomics identifies a key role for hypocretin/orexin receptor-2 in human heart failure. J Am Coll Cardiol. 2015;66(22):2522-2533. doi: 10.1016/j.jacc.2015.09.061.

40. Radak D, Katsiki N, Resanovic I et al. Apoptosis and Acute Brain Ischemia in Ischemic Stroke. Curr Vasc Pharmacol. 2017;15(2):115-122. doi: 10.2174/157016111566616 1104095522.

41. Rani M, Kumar R, Krishan P. Role of orexins in the central and peripheral regulation of glucose homeostasis: evidences & mechanisms. Neuropeptides. 2018;68:1-6. doi: 10.1016/j.npep.2018.02.002.

42. Saria A, Prast J, Schardl A, Kummer K, Carlsson J. European society for neurochemistry biannual conference: molecular mechanisms of regulation in the nervous system. In: SpringerPlus. Vol.4.;2015:1-32.

43. Shirasaka T, Nakazato M, Matsukura S, Takasaki M, Kannan H. Sympathetic and cardiovascular actions of orexins in conscious rats. Am J Physiol. 1999;277:1780-1785. doi: 10.1002/jcc.21606.

44. Shirasaka T, Kunitake T, Takasaki M, Kannan H. Neuronal effects of orexins: relevant to sympathetic and cardiovascular functions. Regul Pept. 2002;104:91-95. doi: 10.1016/S0167-0115(01)00352-4.

45. Shu Q, Zhang J, Ma W, Lei Y, Zhou D. Orexin-A promotes Glu uptake by OX1R/PKCa/ERK1/2/GLT-1 pathway in astrocytes and protects co-cultured astrocytes and neurons against apoptosis in anoxia/hypoglycemic injury in vitro. Mol Cell Biochem. 2017;425(1-2):103-112. doi: 10.1007/s11010-016-2866-z.

46. Shu X, Zhang Y, Xu H, Kang K, Cai D. Brain-derived neurotrophic factor inhibits glucose intolerance after cerebral ischemia. Neural Regen Res. 2013;8(25):2370-2378. doi: 10.3969/j.issn.1673-5374.2013.25.008.

47. Soko P, Urba A, Biega K et al. Orexins protect neuronal cell cultures against hypoxic stress: an involvement of Akt signaling. J Mol Neurosci. 2014;(52):48-55. doi: 10.1007/s12031-013-0165-7.

48. Sokolowska P, Urba A, Namieci M, Zawilska JB, Biega K. Orexins promote survival of rat cortical neurons. Neurosci Lett. 2012;(506):303-306. doi: 10.1016/j.neulet.2011.11.028.

49. Soya S, Shoji H, Hasegawa E et al. Orexin receptor-1 in the locus coeruleus plays an important role in cue-dependent fear memory consolidation. J Neurosci. 2013;33(36):14549-14557. doi: 10.1523/JNEUROSCI.1130-13.2013.

50. Thrift AG, Thayabaranathan T, Howard G et al. Global stroke statistics. Int J Stroke. 2017;12(1):13-32. doi:10.1177/1747493016676285.

51. Tseng EE, Brock M V, Lange MS et al. Glutamate excitotoxicity mediates neuronal apoptosis after hypothermic circulatory arrest. Ann Thorac Surg. 2010;89(2):440-445. doi: 10.1016/j.athoracsur.2009.10.059.

52. Voisin T, Rouet-Benzineb P, Reuter N, Laburthe M. Orexins and their receptors: Structural aspects and role in peripheral tissues. Cell Mol Life Sci. 2003;60(1):72-87. doi: 10.1007/s000180300005.

53. Wang C-M, Pan Y-Y, Liu M-H, Cheng B-H, Bai B, Chen J. RNA-seq expression profiling of rat MCAO model following reperfusion Orexin-A. Oncotarget. 2017;8(68):113066-113081. doi: 10.18632/oncotarget.22995.

54. Xiong X, White RE, Xu L et al. Mitigation of murine focal cerebral ischemia by the hypocretin/orexin system is associated with reduced inflammation. Stroke. 2013;44(3):764-770. doi: 10.1161/STROKEAHA.112.681700.

55. Yamada N, Katsuura G, Tatsuno I et al. Orexins increase mRNA expressions of neurotrophin-3 in rat primary cortical neuron cultures. Neurosci Lett. 2009;450(2):132-135. doi: 10.1016/j.neulet.2008.11.028.

56. Yamazaki Y, Harada S, Tokuyama S. Post-ischemic hyperglycemia exacerbates the development of cerebral ischemic neuronal damage through the cerebral sodium-glucose transporter. Brain Res. 2012;1489:113-120. doi: 10.1016/j.brainres.2012.10.020.

57. Yang L, Zou B, Xiong X et al. Hypocretin/orexin neurons contribute to hippocampus-dependent social memory and synaptic plasticity in mice. J Neurosci. 2013;33(12):5275-5284. doi: 10.1523/JNEUROSCI.3200-12.2013.Hypocretin/orexin.

58. Yuan L, Dong H, Ph D et al. Neuroprotective Effect of Orexin-A Is Mediated by an Increase of Hypoxia-inducible Factor-1 Activity in Rat. Anesthesiology. 2017;114(2):340-354.

59. Zhang Z, Chopp M. Neural stem cells and ischemic brain. J Stroke. 2016;18(3):267-272. doi: 10.5853/jos.2016.00206.

60. Zhao X, Zhang RX, Tang S et al. Orexin-A-induced ERK1/2 activation reverses impaired spatial learning and memory in pentylenetetrazol-kindled rats via OX1R-mediated hippocampal neurogenesis. Peptides. 2014;54:140-147. doi: 10.1016/j.peptides.2013.11.019.


Review

For citations:


Filchenko I.A., Sviryaev Yu.V., Vlasov T.D. Neuroprotective activity of orexin system in ischemic stroke. Regional blood circulation and microcirculation. 2018;17(2):4-11. (In Russ.) https://doi.org/10.24884/1682-6655-2018-17-2-4-11

Views: 1157


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-6655 (Print)
ISSN 2712-9756 (Online)