Preview

Regional blood circulation and microcirculation

Advanced search

Structural and functional characteristics of endothelial cells of vessels of the heart of newborn rats (immunohistochemical study)

https://doi.org/10.24884/1682-6655-2018-17-2-78-83

Abstract

The study is aimed to investigate the pattern of cytodifferentiation of developing endothelial cells (EC) of microcirculatory bed of the heart of newborn rats using light microscopy and immunohistochemical labeling of von Willebrand factor (vWF). Immunohistochemical study was carried out on Wistar rats on the postnatal day 1 (n=6). For the first time, EC of the developing vessels of the heart of newborn rats were found to be on different stages of cytodifferentiation. Most pronounced structural and functional maturity at this developmental stage was typical for EC of intima of aorta, coronary vessels, middle and small arteries and arterioles of the myocardium in the upper third of the ventricles. Endothelium of these vessels demonstrates strong vWF-immunoreactivity, while in the developing capillaries of the sinusoidal type of the subepicardial region and ventricular endocardium, the vWF-immunoreaction at this time period is still weak or absent. Morphological pattern and variability of sizes of vWF-immunoreactive granules of endothelium has been established. Signs of secretion in the EC were revealed. Synthesis, accumulation, and exocytosis of vWF are suggested to be associated with the degree of cytodifferentiation of EC.

About the Authors

E. I. Chumasov
Federal State Budgetary Institution «Institute of Experimental Medicine»; Federal State Budgetary Educational Institution of Higher Education «St. Petersburg State Academy of Veterinary Medicine»
Russian Federation


E. S. Petrova
Federal State Budgetary Institution «Institute of Experimental Medicine»
Russian Federation


D. E. Korzhevskii
Federal State Budgetary Institution «Institute of Experimental Medicine»
Russian Federation


References

1. Афанасьев Ю. И., Горячкина В. Г. Сердечно-сосудистая система: рук-во по гистологии. Т. 2 / под ред. Р. К. Данилова. - 2-е изд. - СПб.: СпецЛит, 2011. - С. 241-296. [Afanasyev YuI, Goryachkina VG. Cardiovascular system. R.K. Danilov, editor. Textbook on histology. 2nd ed. St. Petersburg: SpecLit; 2011. V. 2: 241-296. (In Russ)].

2. Банин В. В. Роль внеклеточного матрикса в регуляции ангиогенеза // Регионарное кровообращение и микроциркуляция. - 2006. - Т. 5. - № 1. - С. 13-19. [Banin VV. The role of extracellular matrix in the regulation of angiogenesis. Regional blood circulation and microcirculation. 2006;5(1):13-19. (In Russ)].

3. Васина Л. В., Власов Т. Д., Петрищев Н. Н Функциональная гетерогенность эндотелия (обзор) // Артериальная гипертензия. - 2017. - Т. 23. - № 2. - С. 88-102. doi:10.18705/1607-419X-2017-23-2-88-102. [Vasina LV Vlasov TD, Petrishchev NN. Functional heterogeneity of the endothelium (review). Arterial hypertension. 2017;23(2):88-102. (In Russ)].

4. Коржевский Д. Э., Кирик О. В., Петрова Е. С. и др. Теоретические основы и практическое применение методов иммуногистохимии / под ред Д. Э. Коржевского. - 2-е изд., испр. и доп. - СПб., 2014. [Korzhevsky DE, Kirik OV, Petrova ES, et al. Theoretical bases and practical application of methods of immunohistochemistry. D.E. Korzhevsky, editor. St. Petersburg: SpecLit; 2014, (2nd edition, revised and enlarged). (In Russ)].

5. Коржевский Д. Э., Кирик О. В., Сухорукова Е. Г. и др. Фактор Виллебранда эндотелиоцитов кровеносных сосудов и его использование в иммуноморфологических исследованиях // Мед. академ. журн. - 2017. - Т. 17. - № 1. - С. 34-40. [Korzhevsky DE, Kirik OV, Sukhorukova EG, et al. The von Willebrand factor of blood vessel endotheliocytes and its use in immunomorphological studies. Medical Academic Journal. 2017;17(1):34-40. (In Russ)].

6. Чумасов Е. И., Петрова Е. С., Коржевский Д. Э. Изучение строения развивающегося эпикарда и особенностей васкуляризации в сердце новорожденных крыс // Актуальные вопр. ветеринар. биол. - 2017. - Т. 34. - № 2. - С. 12-18. [Chumasov EI, Petrova ES, Korzhevsky DE. A study of the structure of the developing epicardium and features of vascularization in the heart of newborn rats. Actual questions of veterinary biology. 2017;34(2):12-18. (In Russ)].

7. Шабров А. В., Апресян А. Г., Добкес А. Л. и др. Роль и методы оценки эндотелиальной дисфункции в практической медицине // Мед. академ. журн. - 2017. - Т. 17. - № 1. - С. 7-23. [Shabrov AV, Apresyan AG, Dobkes AL, et al. The role and methods of assessing endothelial dysfunction in practical medicine. Medical Academic Journal. 2017;17(1):7-23. (In Russ)].

8. Шайдаков Е. В., Евлахов В. И. Роль эндотелия в патогенезе хронической постэмболической лёгочной гипертензии // Ангиол. и сосуд. хир. - 2016. - Т. 22. - № 1. - С. 22-27. [Shaidakov EV, Evlakhov VI. The role of endothelium in the pathogenesis of chronic postembolic pulmonary hypertension. Angiology and vascular surgery. 2016;22(1):22-27. (In Russ)].

9. Babich V, Knipe L, Hewlett L, et al. Differential effect of extracellular acidosis on the release and dispersal of soluble and membrane proteins secreted from the Weibel-Palade body. J Biol Chem. 2009;284(18):12459-12468. doi: 10.1074/jbc.M809235200.

10. Boneu B, Abbal M, Plante J, Bierme R. Letter: Factor-VIII complex and endothelial damage. Lancet. 1975;1(7922):1430.

11. Dettman RW, Denetclaw W, Ordahl CP, Bristow J. Common epicardial origin of coronary vascular smooth muscle, perivascular fibroblasts, and intermyocardial fibroblasts in the avian heart. Dev. Biol. 1998;193(2):169-181. doi: 10.1006/dbio.1997.8801.

12. Fujimoto S. Degranulation of endothelial specific granules of the toad aorta after treatment with compound 48/80. Anat Rec. 1982;203(2):197-204. doi: 10.1002/ar.1092030202.

13. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980:288(5789):373-376.

14. Huang RH, Wang Y, Roth R, et al. Assembly of Weibel-Palade body-like tubules from N-terminal domains of von Willebrand factor. Proc. Natl. Acad. Sci USA. 2008;105(2):482-487. doi: 10.1073/pnas.0710079105.

15. Kumar RA, Moake JL, Nolasco L, et al. Enhanced platelet adhesion and aggregation by endothelial cell-derived unusually large multimers of von Willebrand factor. Biorheology. 2006;43(5):681-691.

16. Richardson M, Tinlin S, De Reske M. Morphological alterations in endothelial cells associated with the release of von Willebrand factor after thrombin generation in vivo. Arterioscler Thromb. 1994;14(6):990-999.

17. Savage B, Sixma JJ, Ruggeri ZM. Functional self-association of von Willebrand factor during platelet adhesion under flow. Proc Natl Acad Sci USA. 2002;99(1):425-430. doi: 10.1073/pnas.012459599.

18. Valentijn KM, van Driel LF, Mourik MJ. Multigranular exocytosis of Weibel-Palade bodies in vascular endothelial cells. Blood. 2010;116(10):1807-1816. doi: 10.1182/blood-2010-03-274209.

19. Wagner DD, Bonfanti R. von Willebrand factor and the endothelium. Mayo Clin Proc. 1991;66(6):621-627.

20. Weibel ER, Palade GE. New cytoplasmic components in arterial endothelia. J. Cell Biol. 1964;23:101-112.


Review

For citations:


Chumasov E.I., Petrova E.S., Korzhevskii D.E. Structural and functional characteristics of endothelial cells of vessels of the heart of newborn rats (immunohistochemical study). Regional blood circulation and microcirculation. 2018;17(2):78-83. (In Russ.) https://doi.org/10.24884/1682-6655-2018-17-2-78-83

Views: 1157


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-6655 (Print)
ISSN 2712-9756 (Online)