Preview

Regional blood circulation and microcirculation

Advanced search

Diagnostic and prognostic potential of non-invasive assessment of cerebral blood flow autoregulation

https://doi.org/10.24884/1682-6655-2015-14-1-4-14

Abstract

Purpose. To study the potential of non-invasive assessment of cerebral blood flow autoregulation (CA) using cross-spectral analysis of slow dopplerographic patterns. Materials and methods. The study involved 40 healthy volunteers and 228 patients with different neurosurgical pathology: cerebral aneurysm - 50 cases, arteriovenous malformation - 52, traumatic brain injury - 61, communicating hydrocephalus - 24, parasagittal meningioma - 20, stenosis and thrombosis of the carotid arteries - 21. Blood flow velocity (BFV) in middle cerebral arteries was monitored using Multi Dop X (DWL, Germany), systemic blood pressure (BP) - noninvasively with Finapres (Ohmeda 2100 USA) within 4 minutes. CA was assessed by calculating the phase shift (PSM) between spontaneous slow oscillations of BP and BFV within the range of systemic Mayer waves (80-120 mHz) and amplitude of intracranial B-waves of BFV (AB) within the range from 8 to 50 mHz). Results and discussion. CA demonstrated different patterns in neurosurgical patients and varied from normal autoregulation to its complete absence. This indicates the degree of compensation of cerebral hemodynamics in pathological conditions such as intracranial hypertension, vasospasm, traumatic edema, ischemia, abnormal arteriovenous shunting. On the basis of perioperative evaluation of PSM and AB, the predictors of efficacy and outcome have been identified in patients with cerebral aneurysms in an acute period of hemorrhage, severe brain injury, cerebral arteriovenous malformations and communicating hydrocephalus. Conclusions. Analysis of slow-wave dopplerographic patterns of BFV in intracranial cerebral arteries and BP is informative, adequate, safe non-invasive way to assess CA in normal and pathological conditions. Perioperative assessment of these patterns can be used to predict the effectiveness of treatment in patients with different neurosurgical pathology.

About the Authors

V. B. Semenyutin
Russian Polenov Neurosurgical Institute
Russian Federation


V. A. Aliev
Russian Polenov Neurosurgical Institute
Russian Federation


V. P. Bersnev
Russian Polenov Neurosurgical Institute
Russian Federation


A. . Patzak
Johannes-Mueller Institute of Physiology University Hospital Charite, Humboldt-University of Berlin
Russian Federation


G. K. Panuntsev
Russian Polenov Neurosurgical Institute
Russian Federation


A. A. Nikiforova
Russian Polenov Neurosurgical Institute
Russian Federation


Sh. Sh. Ramazanov
Russian Polenov Neurosurgical Institute
Russian Federation


D. A. Pechiborsch
Russian Polenov Neurosurgical Institute
Russian Federation


V. B. Iblyaminov
Russian Polenov Neurosurgical Institute
Russian Federation


G. A. Asaturyan
Russian Polenov Neurosurgical Institute
Russian Federation


I. P. Dudanov
Mariinskaya Municipal Hospital
Russian Federation


O. A. Pavlov
Mariinskaya Municipal Hospital
Russian Federation


References

1. Арутюнов А. И., Коновалов А. Н., Чиковани О. К. Исследования регионарного мозгового кровотока методом интраартериального введения Хе133 у больных с артериальными аневризмами // Вопросы нейрохирургии. 1970. № 5. C. 3-9.

2. Гайдар Б. В., Парфенов В. Е., Свистов Д. В. Допплерографическая оценка ауторегуляции кровоснабжения головного мозга при нейрохирургической патологии // Нейрохирургия. 1998. № 3. С. 3l-36.

3. Москаленко Ю. Е. Реактивность мозговых сосудов: физиологические основы, информационная значимость, критерии оценки // Физиолог. журн. СССР. 1986. № 8. С. 1027-1038.

4. Мчедлишвили Г. И., Митагвария Н. П., Ормоцадзе Л. Г. Физиологические механизмы «ауторегуляции» кровоснабжения головного мозга // Физиолог. журн. СССР. 1972. № 2. С. 265-273.

5. Семенютин В. Б. Нарушения кровообращения в перифокальной зоне очаговых поражений головного мозга у больных с внутричерепной сосудистой патологией // Нейрохирургия. 1999. № 2. С. 23-29.

6. Флейшман А. Н. Медленные колебаний гемодинамики: теория, практическое применение в клинической медицине и профилактике. Новосибирск: Наука; Сиб. предприятие РАН, 1999. 215 с.

7. Хилько В. А. Реактивность мозговых сосудов по данным транскраниальной допплерографии / В. А. Хилько, Ю. Е. Москаленко, Б. В. Гайдар, В. Е. Парфенов // Физиолог. журн. СССР. 1989. № 11. С. 1486-1500.

8. Хилько В. А. Транскраниальная допплерография в диагностике цереброваскулярной патологии / В. А. Хилько, Б. В. Гайдар, В. Е. Парфенов, Д. В. Свистов // Второй Всеросс. съезд сердечно-сосудистых хирургов: доклады. СПб., 1993. С. 252-253.

9. Шахнович А. Р., Шахнович В. А. Диагностика нарушений мозгового кровообращения. Транскраниальная допплерография. М., 1996. 446 с.

10. Шемагонов А. В. Динамическая церебральная ауторегуляция: науч.-метод. пособие. Минск: БелМАПО, 2007. 40 с.

11. Aaslid R. Cerebral autoregulation dynamics in humans / R. Aaslid, K. Lindegaard, W. Sorteberg, H. Nornes // Stroke. 1989. Vol. 20. № 1. P. 45-52.

12. Blaber A., Bondar R. L., Stein F. et al. Transfer function analysis of cerebral autoregulation dynamics in autonomic failure patients // Stroke. 1997. Vol. 28. № 9. P. 1686-1692.

13. Brady K., Lee J. K., Kibler K. K. et al. Continuous time-domain analysis of cerebrovascular autoregulation using near-infrared spectroscopy // Stroke. 2007. Vol. 38. № 10. P. 2818-2825.

14. Budohoski K. P., Reinhard M., Aries M. J. Monitoring cerebral autoregulation after head injury. Which component of transcranial Dopplerflow velocity is optimal? // Neurocrit. Care. 2012. Vol. 17. № 2. P. 211-218.

15. Diehl R. Cerebral autoregulation in clinical practice // European Journal of Ultrasound. 2002. V. 16. № 1-2. P. 31-36.

16. Diehl R. Phase relationship between cerebral blood flow velocity and blood pressure. A clinical test of autoregulation / R. R. Diehl, D. Linden, D. Linden, P. Berlit // Stroke. 1995. Vol. 26. № 10. P. 1801-1804.

17. Enevoldsen E., Jensen F. Autoregulation and CO2 responses of cerebral bloodflow in patients with acute severe head injury // J. Neurosurg. 1978. Vol. 48. № 5. P. 689-703.

18. Giller C. The frequency-dependent behavior of cerebral autoregulation // Neurosurgery. 1990. Vol. 27. № 3. P. 362-368.

19. van Beek A. H. Cerebral autoregulation: an overview of current concepts and methodology with special focus on the elderly / A. Hea van Beek, J. Claassen, M. Rikkert, R. Jansen // Journal of Cerebral Blood Flow & Metabolism. 2008. Vol. 28. № 6. P. 1071-1085.

20. Heilbrun M., Olesen J., Lassen N. Regional cerebral bloodflow studies in subarachnoid hemorrhage // J. Neurosurg. 1972. Vol. 37. № 1. P. 36-44.

21. Hu K. Nonlinear assessment of cerebral autoregulation from spontaneous blood pressure and cerebral blood flow fluctuations / K. Hu, C. K. Peng, M. Czosnyka, V. Novak If Cardiovasc Eng. 2008. Vol. 8. № 1. P. 60-71.

22. Katsogridakis E., Bush G., Fan L. et al. Random perturbations of arterial blood pressure for the assessment of dynamic cerebral autoregulation // Physiol. Meas. 2012. Vol. 33. № 2. P. 103-116.

23. Lang E., Mudaliar E., Lagopoulos J. et al. A review of cerebral autoregulation: assessment and measurements // Australian Anaesthesia. 2005. Vol. 20. № 5. P. 161-172.

24. Lindegaard K., Lundar T., Wiberg J. et al. Variations in middle cerebral artery blood flow investigated with noninvasive transcranial Doopler blood flow velocity measurements // Stroke. 1987. Vol. 18. № 6. P. 1025-1030.

25. Marshall R. S., Rundek T., Sproule D. M. et al. Monitoring of Cerebral Vasodilatory Capacity With Transcranial Doppler Carbon Dioxide Inhalation in Patients With Severe Carotid Artery Disease // Stroke. 2003. Vol. 34. № 4. P. 945-949.

26. Meel-van den Abeelen A., van Beek A. H., Slump C. H. et al. Transfer function analysis for the assessment of cerebral autoregulation using spontaneous oscillations in blood pressure and cerebral blood flow // Med. Eng. Phys. 2014. Vol. 36. № 5. P. 563-575.

27. Newell D. The relationship of blood flow velocity fluctuations to intracranial pressure B waves / D. Newell, R. Aaslid, R. Stooss, H. J. Reulen // J. Neurosurg. 1992. Vol. 76. № 3. P. 415-421.

28. Newell D., Aaslid R., Lam A. et al. Comparison of flow and velocity during dynamic autoregulation testing in humans // Stroke. 1994. Vol. 25. № 4. P. 793-797.

29. Nornes H., Wikeby P Cerebral artery bloodflow and aneurysm surgery: Part 1. Local arterial flow dynamics // J. Neurosurg. 1977. Vol. 47. № 6. P. 810-818.

30. Otite F., Mink S., Tan C. et al. Impaired cerebral autoregulation is associated with vasospasm and delayed cerebral ischemia in subarachnoid hemorrhage // Stroke. 2014. Vol. 45. № 3. P. 677-682.

31. Panerai R., White R., Marcus H. Grading of cerebral dynamic autoregulation from spontaneous fluctuations in arterial blood pressure // Stroke. 1998. Vol. 29. № 11. P. 2341-2346.

32. Rankin J. Cerebral vascular accidents in patients over the age of 60 // Scott Med. J. 1957. Vol. 2. № 5. Р. 200-215.

33. Reinhard M., Roth M., Muller T. et al. Cerebral autoregulation in carotid artery occlusive disease assessed from spontaneous blood pressure fluctuations by the correlation coefficient index // Stroke. 2003. Vol. 34. № 9. P. 2138-2144.

34. Smielewski P., Czosnyka M., Kirkpatrick P et al. Assessment of cerebral autoregulation using carotid artery compression // Stroke. 1996. Vol. 27. № 12. P. 2917-2203.

35. Zhang R. Transfer function analysis of dynamic cerebral autoregulation in humans / R. Zhang, J. Zuckerman, C. Giller, B. Levine // Am. J. Physiol. 1998. Vol. 274. № 1. Pt. 2. P. 233-241.


Review

For citations:


Semenyutin V.B., Aliev V.A., Bersnev V.P., Patzak A., Panuntsev G.K., Nikiforova A.A., Ramazanov Sh.Sh., Pechiborsch D.A., Iblyaminov V.B., Asaturyan G.A., Dudanov I.P., Pavlov O.A. Diagnostic and prognostic potential of non-invasive assessment of cerebral blood flow autoregulation. Regional blood circulation and microcirculation. 2015;14(1):4-14. (In Russ.) https://doi.org/10.24884/1682-6655-2015-14-1-4-14

Views: 848


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-6655 (Print)
ISSN 2712-9756 (Online)