Preview

Regional blood circulation and microcirculation

Advanced search

Valuation of myocardial blood supply and metabolism after autologous bone marrow mononuclear cells intracoronary infusion

https://doi.org/10.24884/1682-6655-2014-13-3-23-30

Abstract

Purpose. Morbidity and mortality remain are still high in patients with coronary artery disease, especially in patients with recurrent angina pectoris after coronary artery bypass grafting (CABG) and distal atherosclerosis. The evaluation of myocardial blood supply and metabolism was performed after intracoronary autologous bone marrow mononuclear cells infusion in patients with CAD who are not suitable for CABG. Design/Methodology/Approach. Functional class of angina pectoris (CCS), nitroglycerine consumption, exercise test and 6-min walk test were determined. In addition, following instrumental methods were applied: coronarography, single-photon emission computed tomography and positron emission tomography. Findings. The functional class of angina pectoris and the nitroglycerine consumption decreased in one year follow-up of patients, who resieved treatment with intracoronary autologous bone marrow mononuclear cells infusion. Meanwhile, the tolerance to physical activity, the myocardial blood supply and the metabolism increased in patients with CAD. Conclusion. Autologous bone marrow mononuclear cells intracoronary infusion improves myocardial blood supply and metabolism in patients with coronary artery disease who are not suitable for CABG.

About the Authors

J. A. Nesteruk
St. Petersburg First Pavlov State Medical University
Russian Federation


A. S. Nemkov
St. Petersburg First Pavlov State Medical University
Russian Federation


S. A. Beliy
St. Petersburg First Pavlov State Medical University
Russian Federation


D. V. Ryzhkova
Federal Almazov Medical Research Centre
Russian Federation


A. V. Kalenichenko
St. Petersburg First Pavlov State Medical University
Russian Federation


V. V. Komok
St. Petersburg First Pavlov State Medical University
Russian Federation


References

1. Быков В. Л. Цитология и общая гистология. СПб.: Сотис, 2007.

2. Владимирская Е. Б., Майорова О. А., Румянцев С. А., Румянцев А. Г Биологические основы и перспективы терапии стволовыми клетками. М.: ИД Медпрактика-М, 2005.

3. Методика ПЭТ с 18F-ФДГ. URL: http//www. turkupetcentre.fi/carimas (дата обращения 18.05.14).

4. ПальцевМ. А. Биология стволовых клеток и клеточные технологии. М.: Медицина, 2009.

5. Akara A.R., Durdua S., Aratb M. et al. Five-year follow-up after transepicardial implantation of autologous bone marrow mononuclear cells to ungraftable coronary territories for patients with ischaemic cardiomyopathy // Eur. J. Cardiothorac. Surg. 2009. Vol. 36. P. 633-643.

6. Asahara T., Masuda H., Takahashi T. et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization // Circ. Res. 1999. Vol. 85. P. 221-228.

7. Beeres S. L., Zeppenfeld K., Bax J. et al. Electrophysiological and arrhythmogenic effects of intramyocardial bone marrow cell injection in patients with chronic ischemic heart disease // Circulation. 2006. Vol. 114. P. 606.

8. Beitnes J. O., Gjesdal O., Lunde K. et al. Left ventricular systolic and diastolic function improve after acute myocardial infarction treated with acute percutaneous coronary intervention, but are not influenced by intracoronary injection of autologous mononuclear bone marrow cells: a 3 year serial echocardiographic sub-study of the randomized-controlled ASTAMI study // Eur. J. Echocardiogr. 2011. Vol. 12. P. 98-106.

9. Campagnoli C., Roberts A., Kumar S. et al. Identification of mesenchymal stem progenitor cells in human first-trimester fetal blood, liver and bone marrow // Blood. 2001. Vol. 98. P. 2396-2402.

10. Caplan A. I. Mesenchymal stem cells // Orthop. Res. 1991. Vol. 9. P. 641-650.

11. Chimenti I., Ruckdeschel S. R., Tao-Sheng Li et al. Relative roles of direct regeneration versus paracrine effects of human cardiosphere-derived cells transplanted into infarcted mice // Circ. Res. 2010. Vol. 106. P. 971-980.

12. Garbade J., Schubert A., Rastan A. J. et al. Fusion of bone marrow-derived stem cells with cardiomyocytes in a heterologous in vitro model // Eur. J. Cardiothorac. Surg. 2005. Vol. 28. P. 685-691.

13. Havens A. M., Sun H., Shiozawa Y. et al. Human and murine very small embryonic-like cells represent multipotent tissue progenitors, in vitro and in vivo // Stem Cells Dev. 2014. Vol. 23. Is. 7. P. 689-701.

14. Hossne N. A., Invitti A. L., Buffolo E. et al. Refractory angina cell therapy (ReACT) involving autologous bone marrow cells in patients without left ventricular dysfunction: a possible role for monocytes // Cell Transplant. 2009. Vol. 18. Is. 12. P. 1299-1310.

15. Jiang Y., Jahagirdar B.N., Reinhardt R.L. et al. Pluripotency of mesenchymal stem cells derived from adult marrow // Nature. 2002. Vol.418. P. 41-49.

16. Matsuura K., Wada H., Nagai T. et al. Cardiomyocytes fuse with surrounding noncardiomyocytes and reenter the cell cycle // J. Cell Biol. 2004. Vol. 167. P. 351-363.

17. Meyer G. P., Wollert K. C., Lotz J. et al. Intracoronary bone marrow cell transfer after myocardial infarction: 5-year follow-up from the randomized-controlled BOOST trial // Eur. Heart J. 2009. Vol. 30. Is. 24. P. 2978-2984.

18. Miyanishi M., Mori Y., Seita J. et al. Do pluripotent stem cells exist in adult mice as very small embryonic stem cells? // Stem Cell Reports. 2013. Vol. 1. Is. 2. P. 198-208.

19. Oh H., Bradfute S. B., Gallardo T. D. et al. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction // Proc. Natl. Acad. Sci. 2003. Vol. 100. P. 123-138.

20. Port S. C. Imaging guidelines for nuclear cardiology procedures. American Society of Nuclear Cardiology. P. II / ed. by S. C. Port // J. Nucl. Cardiol. 1999. Vol. 6. № 2. P. G53-G84.

21. Ramalho-Santos M., Yoon S., Matsuzaki Y. et al. «Stemness»: transcriptional profiling of embryonic and adult stem cells // N. Engl. J. Med. 2001. Vol. 344. P. 385-386.

22. Shintani S., Murohara T., Ikeda H. et al. Mobilization of endothelial progenitor cells in patients with acute myocardial infarction // Circulation. 2001. Vol. 103. P. 2776-2779.

23. Strauer B. E., Brehm M., Zeus T. et al. Intrakoronare, humane autologue Stammzelltransplantation zur Myokardregeneration nach Herzinfarkt // Dtsch. Med. Wsch. 2001. Vol.26. P. 932-938.

24. Strauer B., Yousef M., Schannwell C. et al. The acute and long-term effects of intracoronary Stem cell Transplantation in 191 patients with chronic heARt failure: the STAR-heart study // Eur. J. Heart Fail. 2010. Vol. 12. Is. 7. P. 721-729.

25. Wang S., Cui J., Peng W., Lu M. Intracoronary Autologous CD34+ Stem Cell Therapy for Intractable Angina // Cardiology. 2010. Vol. 117. Is. 2. P. 140-147.

26. Zakharova L., Mastroeni D., Mutlu N. et al. Transplantation of cardiac progenitor cell sheet onto infarcted heart promotes cardiogenesis and improves function // Cardiovasc. Res. 2010. Vol. 87. Is.1. P. 8-9.

27. Yang J., Darley R. L., Hallett M., Evans W. H. Low connexin channel-dependent intercellular communication in human adult hematopoietic progenitor/stem cells: probing mechanisms of autologous stem cell therapy // Cell. Commun. Adhes. 2009. Vol. 16. Is. 5-6. P. 138-145.


Review

For citations:


Nesteruk J.A., Nemkov A.S., Beliy S.A., Ryzhkova D.V., Kalenichenko A.V., Komok V.V. Valuation of myocardial blood supply and metabolism after autologous bone marrow mononuclear cells intracoronary infusion. Regional blood circulation and microcirculation. 2014;13(3):23-30. (In Russ.) https://doi.org/10.24884/1682-6655-2014-13-3-23-30

Views: 366


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-6655 (Print)
ISSN 2712-9756 (Online)