Preview

Regional blood circulation and microcirculation

Advanced search

Functional state of arteriolar and venular skin microvessels in patients with essential hypertension

https://doi.org/10.24884/1682-6655-2014-13-3-45-60

Abstract

The aim of the study was to evaluate the vasomotor activity of skin precapillary arterioles, depending on the condition of blood outflow from the capillary bed in patients with essential arterial hypertension (AH). The study included 30 normotensive subjects (NT) and 63 patients with AH, who were tested with a laser Doppler flowmetry with wavelet analysis of blood flow oscillations on the right forearm and ambulatory blood pressure monitoring on the left shoulder. Antihypertensive therapy was stopped for all patients 14 days prior to the experiment or AH was diagnosed for the first time. The hypertensive patients were divided into 2 groups, depending on the amplitude of the respiratory blood flow oscillations in skin microvessels. The first group included 30 patients without blood outflow disorders (VN), the second group consisted of 33 patients with various intensity of functional disorders in venular sector of microvasculature (VS). If the value of the amplitude of blood flow oscillations can be related to the «tone» definition, then VN patients have a significant increase in neurogenic component of vascular tone (p<0.002) and disorder of microvessel vasomotor endothelial function (p=0.065) in regard to NT, and VS patients comparing to NT have a significant reduction of myogenic component tone of precapillary arterioles (p<0.05). VN patients compared to VS patients have a higher precapillary arteriolar tone due to endothelial (p<0.01), neurogenic (p<0.01) and myogenic (p<0,01) components of the vascular tone. Despite the lower values of the precapillary arteriolar tone, VS patients have higher BP values both at daytime (p<0.0005), and in nocturnal hours (p<0.05), and the functional state of venular sector is connected with nocturnal BP reduction. Obtained results indicate that hypertensive patients can have significant differences in the functional state of microvessels. The assessment of the initial skin microvasculatory regulatory mechanisms status could potentially be useful for individual choice of antihypertensive therapy.

About the Authors

A. A. Fedorovich
Russian Cardiology Research and Production Complex; Institute of Bio-Medical Problems Russian Academy of Sciences
Russian Federation


Sh. B. Gorieva
Russian Cardiology Research and Production Complex
Russian Federation


A. N. Rogoza
Russian Cardiology Research and Production Complex
Russian Federation


N. M. Chikhladze
Russian Cardiology Research and Production Complex
Russian Federation


References

1. Гурфинкель Ю. И., Макеева О. В., Острожинский В. А. Особенности микроциркуляции, эндотелиальной функции и скорости распространения пульсовой волны у пациентов с начальными стадиями артериальной гипертензии // Функциональная диагностика. 2010. № 2. С. 18-25.

2. Козлов В. И., Азизов Г. А., Гурова О. А. Лазерная допплеровская флоуметрия в оценке состояния и расстройств микроциркуляции крови:метод. пособие. М., 2012.

3. Крупаткин А. И. Динамический колебательный контур регуляции капиллярной гемодинамики // Физиология человека. 2007. Т.33. №5. С. 93-101.

4. Крупаткин А. И., Сидоров В. В. Функциональная диагностика состояния микроциркуляторно-тканевых систем: рук-во для врачей. М.: ЛИБРОКОМ, 2013.

5. Микроциркуляция при артериальной гипертензии // Микроциркуляция в кардиологии / под ред. В. И. Маколкина. М.: Визарт, 2004.

6. Ткаченко В. И. Венозное кровообращение. Л.: Медицина, 1979.

7. Федорович А. А., Рогоза А. Н., Гориева Ш. Б., Павлова Т. С. Взаимосвязь функции венулярного отдела сосудистого русла с суточным ритмом артериального давления в норме и при артериальной гипертонии // Кардиолог. вестник. 2008. Т.III (XV). № 2. С. 21-31.

8. Федорович А. А. Функциональное состояние регуляторных механизмов микроциркуляторного кровотока в норме и при артериальной гипертензии по данным лазерной допплеровской флоуметрии // Регионарное кровообращение и микроциркуляция. 2010. № 1(33). С. 49-60.

9. Aalkjar C., Boedtkjer D., Matchkov V. Vasomotion - what is currently thought? // Acta Physiol (Oxf). 2011. Vol. 202(3). P. 253-269.

10. Bernjak A., Clarkson P B. M., McClintock P V. E., Stefanovska A. Low-frequency blood flow oscillations in congestive heart failure and after f1-blocade treatment // Microvasc. Res. 2008. Vol. 76. P. 224-232.

11. Bertuglia S., Colantuoni A., Coppini G., Intaglietta M. Hypoxia- or hyperoxia-induced changes in arteriolar vasomotion in skeletal muscle microcirculation // Am. J. Physiol. 1991. Vol. 260. P. H362-H372.

12. Boegehold M. A. Enhanced arteriolar vasomotion in rats with chronic salt-induced hypertension //Microvasc. Res. 1993. Vol. 45. P. 83-94.

13. Bollinger A., Yanar A., Hoffmann U., Franzeck U.K. Is high-frequency flux motion due to respiration or to vasomotion activity? // Progress in applied microcirculation. 1993. Vol. 20. P. 52-58.

14. Borgos J. Principles of instrumentation: Calibration and technical issues. Laser Doppler. London; Los Angeles; Nicosia: Med-Orion Publishing Company, 1994.

15. Braverman I. M. The cutaneous microcirculation: ultrastructure and microanatomical organization // Microcirculation. 1997. Vol. 4(3). P. 329-340.

16. Caro C. G., Pedley T. J., Schroter R. C., Seed W. A. The mechanics of the circulation. Cambridge University Press, 2012.

17. Chen X., Yang D., Ma S. et al. Increased rhythmicity in hypertensive arterial smooth muscle is linked to transient receptor potencial canonical channels // J. Cell. Mol. Med. 2010. Vol. 14(10). P. 2483-2494.

18. Colantuoni A., Bertuglia S., Intaglietta M. Microvascular vasomotion: origin of laser Doppler fluxmotion // Int. J. Microcirc. Clin. Exp. 1994. Vol. 14. P. 151-158.

19. Coulon P., Constsns J., Gosse P Impairment of skin blood flow during post-occlusive reactive hyperhemy assessed by laser Doppler flowmetry correlates with renal resistive index // J. Human. Hypertension. 2012. Vol. 26. P. 56-63.

20. Davis M. J., Ferrer P. N., Gore R. W. Vascular anatomy and hydrostatic pressure profile in the hamster cheek pouch // Am. J. Physiol. 1986. Vol. 250(2). Pt 2. P. H291-H303.

21. Delaney E. P., Young C. N., DiSabatino A. et al. Limb venous tone and responsiveness in hypertensive humans // J. Appl. Physiol. 2008. Vol. 105. P. 894-901.

22. Dubiel M., Krolczyk J., Gasowski J., Grodzicki T. Skin microcirculation and echocardiographic and biochemical indices of left ventricular dysfunction in non-diabetic patients with heart failure // J. Cardiology. 2011. Vol. 18(3). P. 270-276.

23. Eichna L. W., Bordley J. Capillary blood pressure in man. Direct measurements in the digits of normal and hypertensive subjects during vasoconstriction and vasodilatation variously induced // J. Clin. Invist. 1942. Vol. 21(6). P. 711-729.

24. Falcone J. C., Granger H. J., Meininger G. A. Enhanced myogenic activation in skeletal muscle arterioles from spontaneously hypertensive rats // Am. J. Physiol. 1993. Vol. 265(34). P. H1847-H1855.

25. Farkas K., Kolossvary E., Jarai Z. et al. Noninvasive assessment of microvascular function by laser Doppler flowmetry in patients with essential hypertension // Aterosclerosis. 2004. Vol. 173(1). P. 97-102.

26. Fedorovich A. The functional state of regulatory mechanisms of the microcirculatory blood flow in normal conditions and arterial hypertension according to laser Doppler flowmetry // J. Hyperten. 2010. Vol. 28 (Suppl. A). P. E178.

27. Feihl F., Liauder L., Waeber B., Levy B. I. Hypertension a disease of the microcirculation? // Hypertension. 2006. Vol.48. P.1012-1017.

28. Frohlich E. D., Ventura H. O. Pathophysiology: disease mechanisms // Hypertension. Clinical Publishing Oxford, 2009.

29. Funk W., Intaglietta M. Spontaneous arteriolar Vasomotion // Prog. Appl. Microcirc. 1983. Vol.3. P. 66-82.

30. Grassi G., Colombo M., Seravalle G. et al. Dissociation between muscle and skin sympathetic nerve activity in essential hypertension, obesity and congestive heart failure // Hypertension. 1998. Vol.31. P. 64-67.

31. Grassi G., Seravalle G., Trevano F. Q. et al. Neurogenic abnormalities in masked hypertension // Hypertension. 2007. Vol.50. P.537-542.

32. Gryglewska B., Necki M., Cwynar M. et al. Neurogenic and myogenic resting skin blood flowmotion in subjects with masked hypertension // J. Physiol. Pharmacol. 2010. Vol. 61(5). P. 551-558.

33. Hansell J., Henareh L., Agewall S., Norman M. Non-invasive assessment of endothelial function - relation between vasodilatory responses in skin microcirculation and brachial artery // Clin. Physiol. Funct. Imaging. 2004. Vol. 24. P. 317-322.

34. Holovatz L. A., Thompson-Torgerson C. S., Kenney W. L. The human cutaneous circulation as model of generalized microvascular function // J. Appl. Physiol. 2008. Vol. 105. P. 370-372.

35. Intaglietta M. Vasomotion and flowmotion: physiological mechanisms and clinical evidence // Vasc. Med. 1990. Vol.1. P. 101-112.

36. Kanishcheva E., Fedorovich A., Loukianov M., Boytsov S. Capillary nail bed parameters in hypertensives and normotensives in age group of 60-80 years // J. Hypertension. 2010. Vol. 28 (Suppl. A). P. E182.

37. Kastrup J., Bulow J., Lassen N. A. Vasomotion in human skin before and after local heating recorder with laser Doppler flowmetry // Int. J. Microcirc. 1989. Vol. 8. P. 205-215.

38. Kvernmo H. D., Stefanovska A., Bracic A., Kvernebo K. Oscillations in the human cutaneous blood perfusion signal modified by endothelium-dependent and endothelium-independent vasodilators // Microvasc. Res. 1999. Vol. 57. P. 298-309.

39. Lefer D. J., Lynch C. D., Lapinski K. C., Hutchins P. M. Enhanced vasomotion of cerebral arterioles in spontaneously hypertensive rats // Microvasc. Res. 1990. Vol. 39. P. 129-139.

40. Levy B. I., Ambrosio G., Pries A. R., Struijker-Boudier H. A. Microcirculation in hypertension. A new target for treatment? // Circulation. 2001. Vol. 104. P. 735-740.

41. London G. M., Safar M. E., Simon A. C. et al. Total effective compliance, cardiac output and fluid volumes in essential hypertension // Circulation. 1978. Vol. 57. P. 995-1000.

42. Methods for evaluating endothelial function: a position statement from the European Society of Cardiology Working Group on Peripheral Circulation // Eur. J. Cardiovasc. Preven. Rehabil. 2011. Vol. 18(6). P. 775-789.

43. Muck-Weymann M. E., Albrecht H. P., Hiller D. et al. Respiration-dependence of cutaneous laser Doppler flow motion // Vasa. 1994. Vol. 23(4). P. 299-304.

44. Nilsson H., Aalkjar C. Vasomotion: mechanisms and physiological importance // Molec. Interv. 2003. Vol. 3(2). P. 79-89.

45. Noble J. L. M. L., Smith T. L., Hutchins P. M., Struyker-Bodier A. J. Microvascular alterations in adult conscious spontaneously hypertensive rats // Hypertension. 1990. Vol. 15. P. 415-419.

46. Parthimos D., Edwards D. H., Griffith T. M. Comparison of chaotic and sinusoidal vasomotion in the regulation of microvascular flow // Cardiovasc. Res. 1996. Vol.31. P. 388-399.

47. Pradhan R. K., Chakravarthy V. S. Informational dynamics of vasomotion in microvascular networks: a review // Acta Physiol. 2011. Vol. 201. P. 193-218.

48. Rossi M., Taddei S., Fabbri A. et al. Cutaneous vasodilation to acetylcholine in patients with essential hypertension // J. Cardiovasc. Pharmacol. 1997. Vol. 29. P. 406-411.

49. Rossi M. Diagnostic value of skin vasomotion investigation in vascular diseases // Adv. Biomed. Res. 2010. P. 374-380.

50. Rossi M., Bradbury A., Magagna A. et al. Investigation of skin vasoreactivity and bloodflow oscillations in hypertensive patients: effect of short-term antihypertensive treatment // J. Hyperten. 2011. Vol. 29. P. 1569-1576.

51. Safar M., Plante G., London G. Vascular compliance and blood volume in essential hypertension // Hypertension / eds by J. H. Lagard, B. M. Brenner. N.-Y.: Raven Press Ltd, 1995.

52. Safar M. E., London G. M. Venous system in essential hypertension // Hypertension. 1995. Vol. 69. P. 497-504.

53. Schmid-Schonbein H., Ziege S., Rutten W., Heidtmann H. Active and passive modulation of cutaneous red cellflux as measured by laser Doppler anemometry // Vasa. 1992. Vol. 34. P. 38-47.

54. Schmid-Schonbein H., Ziege S., Grebe R. et al. Synergetic interpretation of patterned vasomotor activity in microvascular perfusion: discrete effects of myogenic and neurogenic vasoconstriction as well as arterial and venous pressure fluctuations // Int. J. Microcirc. Clin. Exp. 1997. Vol. 7(6). P. 349-359.

55. Schnieder R. E., Messerli F. H., Nunez B. D. et al. Hemodynamic, humoral and volume findings in systemic hypertension with isolated ventricular septal hypertrophy // Am. J. Cardiology. 1988. Vol. 15. P. 1053-1057.

56. Shamin-Uzzaman Q. A., Pfenninger D., Kehrer C. et al. Altered cutaneous microvascular responses to reactive hyperemia in coronary artery disease: a comparative study with conduit vessel responses // Clin. Sci. 2002. Vol.103. P. 267-273.

57. Sieg-Dobrescu D., Burnier M., Hayoz D. et al. The return of increased blood pressure after discontinuation of antihypertensive treatment is associated with an impaired post-ischemic skin blood flow response // J. Hyperten. 2001. Vol. 19. P. 1387-1382.

58. Stefanovska A., Bracic M. Physics of the human cardiovascular system // Contemporary Physics. 1999. Vol. 40(1). P. 31-35.

59. Stefanovska A., Bracic M., Kvernmo H.D. Wavelet analysis of oscillations in peripheral blood circulation measured by Doppler technique // IEEE Trans. Biomed. Eng. 1999. Vol. 46. P. 1230-1239.

60. Stewart J., Kohen A., Brouder D. et al. Noninvasive interrogation of microvasculature for signs of endothelial dysfunction in patients with chronic renal failure // Am. J. Physiol. Heart. Circ. Physiol. 2004. Vol. 287. P. H2687-H2696.

61. Taddei S., Virdis A., Ghiadoni L. et al. Role of endothelin in the control of peripheral vascular tone in human hypertension // Heart. Fail. Rev. 2001. Vol. 6. P. 277-285.

62. Takeshita A., Mark A. L. Decreased venous distensibility in borderline hypertension // Hypertension. 1979. Vol. 1. P. 202-206.

63. Tankanag A., Chemeris N. Application of adaptive wavelet transform for analysis of blood flow oscillations in the human skin // Phys. Med. Biol. 2008. Vol. 53. P. 5967-5976.

64. Tankanag A., Chemeris N. A method of adaptive wavelet filtering of the peripheral blood flow oscillations under stationary and non-stationary conditions // Phys. Med. Biol. 2009. Vol.54. P. 5935-5948.

65. Tooke J. E., Williams S. A. Capillary blood pressure // Adv. Exp. Med. Biol. 1987. Vol. 220. P. 209-214.

66. Vuilleumitr P., Decosterd D., Maillard M. et al. Postischemic forearm skin reactive hyperemia is related to cardiovascular risk factors in a healthy female population // J. Hyperten. 2002. Vol. 20. P. 1753-1757.

67. Wallin B. G., Charkoudian N. Sympathetic neural control of integrated cardiovascular function: insights from measurement of human sympathetic nerve activity // Muscle Nerve. 2007. Vol. 36. P. 595-614.

68. Walsh I. A., Hyman C. H., Maronde R. F Venous distensibility in essential hypertension // Cardiovasc. Res. 1969. Vol. 3. P. 338-349.

69. Williams S. A., Boolell M., MacGregor G. A. et al. Capillary hypertension and abnormal pressure dynamics in patients with essential hypertension // Clin. Sci. (Lond). 1990. Vol. 79(1). P. 5-8.

70. Zweifach B. W. Quantitative studies of microcirculatory structure and function. I. Analysis of pressure distribution in the terminal vascular bed in cat mesentery // Circ. Res. 1974. Vol. 34. P. 843-857.

71. Zweifach B. W. Quantitative studies of microcirculatory structure and function. II. Direct measurement of capillary pressure in splanchnic mesenteric vessels // Circ. Res. 1974. Vol. 34. P. 858-866.


Review

For citations:


Fedorovich A.A., Gorieva Sh.B., Rogoza A.N., Chikhladze N.M. Functional state of arteriolar and venular skin microvessels in patients with essential hypertension. Regional blood circulation and microcirculation. 2014;13(3):45-60. (In Russ.) https://doi.org/10.24884/1682-6655-2014-13-3-45-60

Views: 447


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-6655 (Print)
ISSN 2712-9756 (Online)