Preview

Regional blood circulation and microcirculation

Advanced search

Phase and tonic contractions of lymphatic vessels and nodes under the action of atrial natriuretic peptide

https://doi.org/10.24884/1682-6655-2015-14-3-72-77

Abstract

Introduction and purpose. Active lymph flow ensured by the phase contraction of lymphatic vessels and nodes is regulated by humoral mechanisms. The role of atrial natriuretic peptide (ANP) in the modulation of lymph flow has been poorly studied. The goal of the study was to examine the effect of the ANP, which is released into the blood by increasing the volume of circulating blood, on the active transport function of lymphatic vessels and nodes. Materials and methods. The study was performed on isolated segments of bovine mesenteric lymphatic vessels with a diameter of 1.5-2.0 mm (n = 47) and the capsule strip lymph nodes (n = 42). The contractive function of lymphatic vessels and nodes was examined using the equipment for the study of isolated preparations with FORT-10 transducer. The data were processed in program Labmaster. Results and discussion. ANP (1-100 ng/ml) caused a dose-dependent decrease in frequency and amplitude of spontaneous contractions and tone of lymphatic vessels and nodes. The ANP-induced relaxation of lymphatic vessels and nodes was not modified by pretreatment with 5x10-5 M L-NAME, 3x10-6 M diclofenac sodium and 1x10-5 M methylene blue. The relaxation, however, was significantly reduced by pretreatment with 1x10-5 M glibenclamide. The mechanical removal of endothelial cells in the lymph vessels and nodes caused no significant effect on the ANP-induced relaxation. Conclusions. The results of the study show that ANP inhibits the transport of lymph by reducing the amplitude and frequency of the phase contractions and relaxation of smooth muscle of lymphatic vessels and nodes. The effect of ANP is endothelium-independent and is mediated by activation of plasmalemmal ATP-sensitive K+ channels of smooth muscle cells.

About the Authors

G. I. Lobov
Pavlov Institute of Physiology Russian Academy of Sciences
Russian Federation


M. N. Pan'kova
Pavlov Institute of Physiology Russian Academy of Sciences
Russian Federation


S. N. Abdreshov
Institute of Human and Animal Physiology SC MES of Kazakhstan Republic
Russian Federation


References

1. Лобов Г.И. Реологические свойства крупных лимфатических сосудов // Физиолог. журн. СССР им. И. М. Сеченова. 1990. Т. 76. № 3. С. 371-377.

2. Лобов Г.И., Панькова М.Н. NO-зависимая модуляция сократительной функции гладких мышц капсулы лимфатических узлов // Росс. физиолог. журн. им. И. М. Сеченова. 2010. Т. 96. № 5. С. 489-497.

3. Лобов Г.И., Панькова М.Н. Транспорт лимфы: роль лимфатических узлов // Регионарное кровообращение и микроциркуляция. 2012. № 2 (42). С. 52-56.

4. Duda T., Pertzev A., Sharma R.K. Atrial natriuretic factor receptor guanylate cyclase, ANF-RGC, transduces two independent signals, ANF and Ca2+ // Front. Mol. Neurosci. 2014. Vol. 17. № 7. Р. 17. doi: 10.3389/fnmol.2014.00017.

5. Hama N., Itoh H., Shirakami G. et al. Detection of C-type natriuretic peptide in human circulation and marked increase of plasma CNP level in septic shock patients // Biochem. Biophys. Res. Commun. 1994. Vol. 198. № 3. P. 1177-1182.

6. McHale N.G., Roddie I.C. The effects of catecholamines on pumping activity in isolated bovine mesenteric lymphatics // J. Physiol. 1983. Vol. 338. P. 527-536.

7. Ohhashi T., Watanabe N., Kawai Y. Effects of atrial natriuretic peptide on isolated bovine mesenteric lymph vessels // Am. J. Physiol. 1990. Vol. 259. № 1. Pt. 2. P. H42- Н47.

8. Ohhashi T. Mechanisms for regulating tone in lymphatic vessels // Biochem. Pharmacol. 1993. Vol. 45. № 10. P. 1941-1946.

9. Pandey K.N. Biology of natriuretic peptides and their receptors // Peptides. 2005. Vol. 26. № 6. P. 901-932.

10. Pandey K.N. Guanylyl cyclase/natriuretic peptide receptor-A signaling antagonizesphosphoinositide hydrolysis, Ca(2+) release, and activation of protein kinase C // Front. Mol. Neurosci. 2014. Vol. 7. № 75. doi: 10.3389/fnmol.2014.00075.

11. Scallan J.P., Davis M.J., Huxley V.H. Permeability and contractile responses of collecting lymphatic vessels elicited by atrial and brain natriuretic peptides // J. Physiol. 2013. Vol. 591. P. 5071-5081.

12. Srinivasan R.S., Dillard M.E., Lagutin O.V. et al. Lineage tracing demonstrates the venous origin of the mammalian lymphatic vasculature // Genes Dev. 2007. Vol. 21. P. 2422-2432.

13. von der Weid P.Y., Rehal S., Dyrda P. et al. Mechanisms of VIP-induced inhibition of the lymphatic vessel pump // J. Physiol. 2012. Vol. 590 (Pt. 11). P. 2677-2691.

14. Yoshimura M., Yasue H., Okumura K. et al. Different secretion patterns of atrial natriuretic peptide and brain natriuretic peptide in patients with congestive heart failure // Circulation. 1993. Vol. 87. № 2. P. 464-469.

15. Zawieja D.C. Contractile physiology of lymphatics // Lymphat. Res. Biol. 2009. Vol. 7. № 2. P. 87-96.


Review

For citations:


Lobov G.I., Pan'kova M.N., Abdreshov S.N. Phase and tonic contractions of lymphatic vessels and nodes under the action of atrial natriuretic peptide. Regional blood circulation and microcirculation. 2015;14(3):72-77. (In Russ.) https://doi.org/10.24884/1682-6655-2015-14-3-72-77

Views: 1281


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-6655 (Print)
ISSN 2712-9756 (Online)