Preview

Regional blood circulation and microcirculation

Advanced search

The Cerebral Arterial Compliance in Polytraumat

https://doi.org/10.24884/1682-6655-2015-14-4-22-27

Abstract

Introduction and purpose. Cerebral arterial compliance (CAC) is an important parameter of a microcirculation. The main function of CAC is to maintain the stiffness of vessels and protect downstream vessels when changing perfusion pressure. The aim of the study was to assess the CAC in severe polytrauma patients with and without intracranial hematomas (IH). Materials. We examined 75 polytrauma patients with severe traumatic brain injury (mean 32.2±11.6 years, 42 men, 33 women). The first group included 34 patients without IH and the second group included 36 patients with epidural (6), subdural (26) and multiple (4) hematomas. Perfusion computed tomography (PCT) was performed in 1-14 days after trauma in the first group and in 2-8 days after surgical evacuation of the hematoma in the second group. Mean arterial pressure was measured simultaneously with PCT. CAC was calculated by the formula modified by M. Czosnyka. Results. The CAC was significantly decreased (p<0.001) in both groups in comparison with normal values. The CAC in the group 2 was significantly lower than in the groupl, both on the side of the former hematoma (p=0.017). Conclusion. The results indicate severe dysregulation of cerebral capillary blood flow in polytrauma patients, which increases in the patients with polytrauma and traumatic IH.

About the Authors

A. O. Trofimov
Regional Hospital named after N.A. Semashko
Russian Federation


G. V. Kalentyev
Regional Hospital named after N.A. Semashko
Russian Federation


D. I. Agarkova
Regional Hospital named after N.A. Semashko
Russian Federation


V. N. Grigoryeva
Regional Hospital named after N.A. Semashko
Russian Federation


References

1. Семенютин В. Б. Оценка состояния мозгового кровообращения с помощью кросс-спектрального анализа спонтанных колебаний системной и церебральной гемодинамики // Нейрохирургия. 2008. № 1. С. 48-57.

2. Avezaat С. J. J., Eijndhoven J. Н. М. Cerebrospinal fluid pulse pressure and craniospatial dynamics. A theoretical, clinical and experimental study // Erasmus University, Rotterdam. 1984.

3. Baledent O. Value of phase contrast magnetic resonance imaging for investigation ofcerebral hydrodynamics // J. Neuroradiol. 2006. Vol. 33. № 5. P. 292-303.

4. Behzadi Y., Liu T. An arteriolar compliance model of the cerebral blood flow response to neural stimulus // Neuroimage. 2005. № 25. P. 1100-1111.

5. Berne R., Levy M. Physiology. 3rd ed. St. Louis: Mosby. 1993. P. 455-456.

6. Bortel Van L., Duprez D. Clinical applications of arterial stiffness, task force III: Recommendations for user procedures // Am. J. Hypertens. 2002. № 15. P. 445-452.

7. Carrera E., Kim D.-J., Castellani G. et al. Cerebral arterial compliance in patients with internal carotid artery disease // Eur. J. Neurol. 2011. № 18. P. 711-718.

8. Carrera E., Kim D.-J., Castellani G. et al. Effect of hyper- and hypocapnia on cerebral arterial compliance in normal subjects // J. Neuroimaging. 2011. №21. P. 121-125.

9. Czosnyka M., Richards H., Reinhard M. Cerebrovascular time constant: dependence on cerebral perfusion pressure and end-tidal carbon dioxide concentration // Neurol. Res. 2012. № 34. P. 17-24.

10. Enzmann D., Pelc N. Cerebrospinal fluid flow measured by phase-contrast cine MR // Am. J. Neuroradiol. 1993. № 14. P. 1301-1307.

11. Esther A., Warnert H., Murphy K. Noninvasive assessment of arterial compliance of human cerebral arteries with short inversion time arterial spin labeling // J. of Cerebral Blood Flow & Metabolism. 2015. № 35. P. 461-468. doi:10.1038/jcbfin.2014.219.

12. Figueroa C. A., Taylor C. A., Chiou, A. J. et al. 2009: Magnitude and direction of pulsatile displacementforces acting on thoracic aortic endografts // J. of Endovascular Therapy. № 3. P. 350-358.

13. Finkelstein S., Collins V., Cohn J. Vascular compliance response to vasodilators by Fourier and pulse contour analysis // Hypertension. 1988. № 12. P. 380-387.

14. Hundley W., Kitzman D., Morgan T. Cardiac cycle-dependent changes in aortic area and distensibility are reduced in older patients with isolated diastolic heart failure and correlate with exercise intolerance // J. of the American College of Cardiology. 2001. № 38. P. 796-802.

15. Ikdip K. Exploring Differences in Vascular Aging and Cerebrovascular Hemodynamics between Older Adults of White Caucasian and South Asian Origin. A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Science in Kinesiology Waterloo, Ontario, Canada. 2014. 168 p.

16. Itoh T., Matsumoto M., Handa N. et al. Rate of successful recording of bloodflow signals in the middle cerebral artery using transcranial Doppler sonography // Stroke. 1993. № 24. P. 1192-1195.

17. Johnson U. Favorable outcome in traumatic brain injury patients with impaired cerebral pressure autoregulation when treated at low cerebral perfusion pressure levels // Neurosurgery. 2011. Vol. 68. № 3. Р. 714-721.

18. Kasprowicz M. Badania hemodynamiki mozgowej na podstawie analizy pulsacji cisnienia wewnqtrzczaszkowego, cisnienia tftniczego i przeplywu krwi mozgowej. Oficyna Wydawnicza Politechniki Wroclawskiej Wroclaw. 2012. P. 78.

19. Kim D.-J., Kasprowicz M., Carrera E. The monitoring of relative changes in compartmental compliances of brain // Physiol. Meas. 2009. № 30. P. 647-659.

20. Laan ter M. Neuromodulation of cerebral blood flow. Proefschrift ter verkrijging van de graad van doctor Groningen, The Netherlands. 2014. P. 127.

21. Lassen N. Autoregulation of cerebral blood flow // Circ. Res. Suppl. № 5. P. 201-204.

22. Laurent S., Cockcroft J., Bortel Van L. Expert consensus document on arterial stiffness: methodological issues and clinical applications // Eur. Heart J. 2006. №27. P. 2588-2605.

23. Marmarou A. A review of progress in understanding the pathophysiology and treatment of brain edema // Neurosurg. Focus. 2007. Vol. 22. № 5. P. 1-12.

24. Mashour G. Case studies in neuroanesthesia and neurocritical care // Ehab. Farag. 2011. P. 342.

25. Nichols W., О'Rourke M. McDonald’s bloodflow in arteries: Theoretical, experimental and clinical principles. Fifth Edition. Oxford University Press, 2005. P. 624.

26. О'Rourke M. F., Safar M. E., Nichols W. W. Pulse wave form analysis and arterial stiffness: realism can replace evangelism and skepticism // J. Hypertens. 2004. № 22. P. 1633-1634.

27. Pannier B., Avolio A., Hoeks A. Methods and devices for measuring arterial compliance in humans // Am. J. Hypertens. 2002. № 15. P. 743-753.

28. Redheuil A., Yu W.-C., Wu C. Reduced ascending aortic strain and distensibility: earliest manifestations of vascular aging in humans // Hypertension. 2010. Vol. 55. № 2. P. 319-326.

29. Spencer M., Denison A. Pulsatile blood flow in the vascular system. Handbook of Physiology Circulation. Washington, DC American Physiological Society. 1963. 842 p.

30. Tanaka H, Dinenno F, Monahan K. Aging, habitual exercise, and dynamic arterial compliance // Circulation. 2000. № 102. P. 1270-1275.

31. Ursino M. A simple mathematical model of the interaction between intracranial pressure and cerebral hemodynamics// J. Appl. Physiol. 1997. № 82. P. 1256-1269.


Review

For citations:


Trofimov A.O., Kalentyev G.V., Agarkova D.I., Grigoryeva V.N. The Cerebral Arterial Compliance in Polytraumat. Regional blood circulation and microcirculation. 2015;14(4):22-27. (In Russ.) https://doi.org/10.24884/1682-6655-2015-14-4-22-27

Views: 1065


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-6655 (Print)
ISSN 2712-9756 (Online)