Preview

Regional blood circulation and microcirculation

Advanced search

Myocardial hibernation: molecular mechanisms, clinical significance and diagnostic methods

https://doi.org/10.24884/1682-6655-2019-18-3-9-15

Abstract

Myocardial hibernation is a persistent inhibition of contractility of the viable myocardium of the left ventricle, resulting from its hypoperfusion. The most important manifestation of hibernation is the preservation of the viability of the myocardial tissue. This phenomenon is based on three main mechanisms: 1) myocardial metabolic adaptation, manifested by enhanced glucose uptake; 2) activation of the cardiomyocyte death gene program; 3) programmed cell death, i. e. autophagy and apoptosis of cardiomyocytes. Methods for diagnosing viable myocardium include dobutamine stress echocardiography, single photon emission computed tomography of the myocardium, positron emission tomography, magnetic resonance imaging and electromechanical mapping. In the clinical aspect, the presence and volume of viable myocardium are taken into account when addressing the issue of revascularization in patients with one- and two-vessel coronary artery disease without involvement of the anterior descending artery, as well as in patients with a significant decrease in the global myocardial contractile function, when surgery can lead to an increase in the left ventricular ejection fraction.

About the Authors

M. M. Galagudza
Almazov National Medical Research Centre
Russian Federation
Doctor of Medical Sciences, Professor, RAS Corresponding Member, Director of the Institute of Experimental Medicine


D. L. Sonin
Almazov National Medical Research Centre
Russian Federation
Candidate of Medical Sciences, Head of the Department of Microcirculation and Myocardial Metabolism, Institute of Experimental Medicine


I. V. Aleksandrov
Almazov National Medical Research Centre
Russian Federation
Junior Researcher at the Department of Microcirculation and Myocardial Metabolism, Institute of Experimental Medicine


References

1. Diamond GA, Forrester JS, deLuz PL et al. Post-extrasystolic potentiation of ischemic myocardium by atrial stimulation. Am Heart J. 1978;95(2):204–209.

2. Rahimtoola SH. A perspective on the three large multicenter randomized clinical trials of coronary bypass surgery for chronic stable angina. Circulation. 1985;72(6 Pt 2):V123– V135.

3. Heusch G. Hibernating myocardium. Physiol Rev. 1998;78(4):1055–1085.

4. Shlyakhto EV, Petrishchev NN, Galagudza MM et al. Cardioprotection: Fundamental and Clinical Aspects. SPb, NP-Print, 2013:399. (In Russ.)

5. Heusch G. Myocardial ischemia: lack of coronary blood flow, myocardial oxygen supply-demand imbalance, or what? Am J Physiol Heart Circ Physiol. 2019;316(6):H1439–H1446. Doi: 10.1152/ajpheart.00139.2019.

6. Maes A, Flameng W, Nuyts J et al. Histological alterations in chronically hypoperfused myocardium. Correlation with PET findings. Circulation. 1994;90(2):735–745.

7. Schwarz ER, Schaper J, Dahl vom J et al. Myocyte degeneration and cell death in hibernating human myocardium. J Am Coll Cardiol. 1996;27(7):1577–1585.

8. Elsässer A, Schlepper M, Klövekorn WP et al. Hibernating myocardium: an incomplete adaptation to ischemia. Circulation. 1997;96(9):2920–2931.

9. Thomas SA, Fallavollita JA, Suzuki G et al. Dissociation of regional adaptations to ischemia and global myolysis in an accelerated Swine model of chronic hibernating myocardium. Circ Res. 2002;91(10):970–977.

10. Berry GJ, Masek M. The pathology of hibernating myocardium. Nucl Med Commun. 2002;23(4):303–309.

11. Ausma J, Eys van GJ, Broers JL et al. Nuclear lamin expression in chronic hibernating myocardium in man. J Mol Cell Cardiol. 1996;28(6):1297–1305.

12. Ausma J, Furst D, Thone F et al. Molecular changes of titin in left ventricular dysfunction as a result of chronic hibernation. J Mol Cell Cardiol. 1995;27(5):1203–1212.

13. Shvedova M, Anfinogenova Y, Popov SV, Atochin DN. Connexins and Nitric Oxide Inside and Outside Mitochondria: Significance for Cardiac Protection and Adaptation. Front Physiol. 2018;9:479. Doi: 10.3389/fphys.2018.00479.

14. Ausma J, Cleutjens J, Thone F et al. Chronic hibernating myocardium: interstitial changes. Mol Cell Biochem. 1995;147(1–2):35–42.

15. Frangogiannis NG, Shimoni S, Chang SM et al. Active interstitial remodeling: an important process in the hibernating human myocardium. J Am Coll Cardiol. 2002;39(9):1468–1474.

16. Frangogiannis NG, Shimoni S, Chang SM et al. Evidence for an active inflammatory process in the hibernating human myocardium. Am J Pathol. 2002;160(4):1425–1433.

17. Maki M, Luotolahti M, Nuutila P et al. Glucose uptake in the chronically dysfunctional but viable myocardium. Circulation. 1996;93(9):1658–1666.

18. Depre C, Vatner SF. Mechanisms of cell survival in myocardial hibernation. Trends Cardiovasc Med. 2005;15(3):101–110.

19. Depre C, Taegtmeyer H. Metabolic aspects of programmed cell survival and cell death in the heart. Cardiovasc Res. 2000;45(3):538–548.

20. Yuan Y, Huang B, Miao H et al. A «Hibernating-Like» Viable State Induced by Lentiviral Vector-Mediated Pigment Epithelium-Derived Factor Overexpression in Rat Acute Ischemic Myocardium. Hum Gene Ther. 2019;30(6):762–776. Doi: 10.1089/hum.2018.186.

21. May D, Gilon D, Djonov V et al. Transgenic system for conditional induction and rescue of chronic myocardial hibernation provides insights into genomic programs of hibernation. Proc Natl Acad Sci U S A. 2008;105(1):282–287.

22. Mayr M, May D, Gordon O et al. Metabolic homeostasis is maintained in myocardial hibernation by adaptive changes in the transcriptome and proteome. J Mol Cell Cardiol. 2011;50(6):982–990. Doi: 10.1016/j.yjmcc.2011.02.010.

23. Yan L, Sadoshima J, Vatner DE, Vatner SF. Autophagy in ischemic preconditioning and hibernating myocardium. Autophagy. 2009;5(5):709–712.

24. Elsasser A, Vogt AM, Nef H et al. Human hibernating myocardium is jeopardized by apoptotic and autophagic cell death. J Am Coll Cardiol. 2004;43(12):2191–2199.

25. Angelini A, Maiolino G, La Canna G et al. Relevance of apoptosis in influencing recovery of hibernating myocardium. Eur J Heart Fail. 2007;9(4):377–383.

26. Canty JM Jr, Suzuki G, Banas MD et al. Hibernating myocardium: chronically adapted to ischemia but vulnerable to sudden death. Circ Res. 2004;94(8):1142–1149.

27. Luisi AJ Jr, Fallavollita JA, Suzuki G, Canty JM Jr. Spatial inhomogeneity of sympathetic nerve function in hibernating myocardium. Circulation. 2002;106(7):779–781.

28. Ovchinnikov V, Suzuki G, Canty JM Jr, Fallavollita JA. Blunted functional responses to pre- and postjunctional sympathetic stimulation in hibernating myocardium. Am J Physiol Heart Circ Physiol. 2005;289(4):H1719–H1728.

29. Fallavollita JA, Banas MD, Suzuki G et al. 11C-metahydroxyephedrine defects persist despite functional improvement in hibernating myocardium. J Nucl Cardiol. 2010; 17(1):85–96. Doi: 10.1007/s12350-009-9164-z.

30. Camici PG, Rimoldi O. Myocardial hibernation vs repetitive stunning in patients. Cardiol Rev. 1999;7(1):39–43.

31. Galagudza MM. Myocardial stunning: mechanisms and clinical implications. Bulleten FTsSKE im. V. A. Almazova. 2011;(2):5–11. (In Russ.)

32. Redwood SR, Ferrari R, Marber MS. Myocardial hibernation and stunning: from physiological principles to clinical practice. Heart. 1998;80(3):218–222.

33. Rahimtoola SH. The hibernating myocardium. Am Heart J. 1989;117(1):211–221.

34. Montalescot G, Faraggi M, Drobinski G et al. Myocardial viability in patients with Q wave myocardial infarction and no residual ischemia. Circulation. 1992;86(1):47–55.

35. Dutka DP, Camici PG. Hibernation and congestive heart failure. Heart Fail Rev. 2003;8(2):167–173.

36. Shivalkar B, Borgers M, Daenen W et al. ALCAPA syndrome: an example of chronic myocardial hypoperfusion? J Am Coll Cardiol. 1994;23(3):772–778.

37. Westaby S. Coronary revascularization in ischemic cardiomyopathy. Surg Clin North Am. 2004;84(1):179–199.

38. Alderman EL, Fisher LD, Litwin P et al. Results of coronary artery surgery in patients with poor left ventricular function (CASS). Circulation. 1983;68(4):785–795.

39. Auerbach MA, Schoder H, Hoh C et al. Prevalence of myocardial viability as detected by positron emission tomography in patients with ischemic cardiomyopathy. Circulation. 1999;99(22):2921–2926.

40. Schinkel AF, Bax JJ, Sozzi FB et al. Prevalence of myocardial viability assessed by single photon emission computed tomography in patients with chronic ischaemic left ventricular dysfunction. Heart. 2002;88(2):125–130.

41. Cleland JG, Pennell DJ, Ray SG et al. Myocardial viability as a determinant of the ejection fraction response to carvedilol in patients with heart failure (CHRISTMAS trial): randomised controlled trial. Lancet. 2003;362(9377):14–21.

42. Löffler AI, Kramer CM. Myocardial Viability Testing to Guide Coronary Revascularization. Interv Cardiol Clin. 2018;7(3):355–365. Doi: 10.1016/j.iccl.2018.03.005.

43. Ker WDS, Nunes THP, Nacif MS, Mesquita CT. Practical Implications of Myocardial Viability Studies. Arq Bras Cardiol. 2018;110(3):278–288. Doi: 10.5935/abc.20180051.

44. Cullen MW, Pellikka PA. Recent advances in stress echocardiography. Curr Opin Cardiol. 2011;26(5):379–384. Doi: 10.1097/HCO.0b013e328349035b.

45. Nifontov EM, Kazarin VV, Ryzhkova DV et al. The Prognostic Value of the Viability of a Dysfunctioning Myocardium Detected During Stress-echocardiographic Tests. Arterialnaya gipertenziya. 2001;7(1):28–31. (In Russ.)

46. Schinkel AF, Valkema R, Geleijnse ML et al. Single-photon emission computed tomography for assessment of myocardial viability. EuroIntervention. 2010;6(Suppl G):G115–G122.

47. Petrasinovic Z, Ostojic M, Beleslin B et al. Prognostic value of myocardial viability determined by a 201Tl SPECT study in patients with previous myocardial infarction and mild-to-moderate myocardial dysfunction. Nucl Med Com-mun. 2003;24(2):175–181.

48. Ryzhkova DV, Nifontov EM, Tyutin LA. Positron Emission Tomography Application for Myocardial Blood Flow and Coronary Flow Reserve Measurement in Patients with Cardiovascular Pathology. Arterialnaya gipertenziya. 2006;12(3):200–211. (In Russ.)

49. Bengel FM, Higuchi T, Javadi MS, Lautamäki R. Cardiac positron emission tomography. J Am Coll Cardiol. 2009;54(1):1–15. Doi: 10.1016/j.jacc.2009.02.065.

50. Schwaiger M, Schelbert HR, Ellison D et al. Sustained regional abnormalities in cardiac metabolism after transient ischemia in the chronic dog model. J Am Coll Cardiol. 1985; 6(2):336–347.

51. Mpanya D, Tsabedze N, Libhaber C et al. Fluorine-18 fluorodeoxyglucose positron emission tomography in assessing myocardial viability in a tertiary academic centre in Johannesburg, South Africa: a pilot study. Cardiovasc J Afr. 2019;30:1–5. Doi: 10.5830/CVJA-2019-029.

52. Camici PG, Rimoldi OE. Myocardial blood flow in patients with hibernating myocardium. Cardiovasc Res. 2003; 57(2):302–311.

53. Blankstein R, Di Carli MF. Integration of coronary anatomy and myocardial perfusion imaging. Nat Rev Cardiol. 2010;7(4):226–236. Doi: 10.1038/nrcardio.2010.15.

54. Gaemperli O, Bengel FM, Kaufmann PA. Cardiac hybrid imaging. Eur Heart J. 2011;32(17):2100–2108. Doi: 10.1093/eurheartj/ehr057.

55. Ryan MJ, Perera D. Identifying and Managing Hibernating Myocardium: What’s New and What Remains Unknown? Curr Heart Fail Rep. 2018;15(4):214–223. Doi: 10.1007/s11897-018-0396-6.

56. Siebelink HM, Lamb HJ. Magnetic resonance imaging for myocardial viability. EuroIntervention. 2010;6(Suppl G): G107–G114.

57. Elhendy A, Porter TR. Assessment of myocardial perfusion with real-time myocardial contrast echocardiography: methodology and clinical applications. J Nucl Cardiol. 2005; 12(5):582–590.

58. Hayat SA, Senior R. Contrast echocardiography for the assessment of myocardial viability. Curr Opin Cardiol. 2006;21(5):473–478.

59. Fernandes DR, Tsutsui JM, Bocchi EA et al. Qualitative and quantitative real time myocardial contrast echocardiography for detecting hibernating myocardium. Echocardiography. 2011;28(3):342–349. Doi: 10.1111/j.1540-8175.2010.01317.x.

60. Chelliah RK, Hickman M, Kinsey C et al. Myocardial contrast echocardiography versus single photon emission computed tomography for assessment of hibernating myocardium in ischemic cardiomyopathy: preliminary qualitative and quantitative results. J Am Soc Echocardiogr. 2010;23(8):840–847. Doi: 10.1016/j.echo.2010.06.004.

61. Gyöngyösi M, Dib N. Diagnostic and prognostic value of 3D NOGA mapping in ischemic heart disease. Nat Rev Cardiol. 2011;8(7):393–404. Doi: 10.1038/nrcardio. 2011.64.

62. Zelt JGE, Liu PP, Erthal F et al. N-Terminal Pro B-Type Natriuretic Peptide and High-Sensitivity Cardiac Troponin T Levels Are Related to the Extent of Hibernating Myocardium in Patients with Ischemic Heart Failure. Can J Cardiol. 2017;33(11):1478–1488. Doi: 10.1016/j. cjca.2017.06.012.


Review

For citations:


Galagudza M.M., Sonin D.L., Aleksandrov I.V. Myocardial hibernation: molecular mechanisms, clinical significance and diagnostic methods. Regional blood circulation and microcirculation. 2019;18(3):9-15. (In Russ.) https://doi.org/10.24884/1682-6655-2019-18-3-9-15

Views: 6136


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-6655 (Print)
ISSN 2712-9756 (Online)