Preview

Regional blood circulation and microcirculation

Advanced search

The relationship of endothelial vasoregulation factors and the state of the antioxidant system with manifestations of rheumatoid arthritis

https://doi.org/10.24884/1682-6655-2020-19-1-60-66

Abstract

The aim of the work was to identify the relationship of vasomotor and angiogenic factors of the endothelium, as well as the state of the antioxidant system in rheumatoid arthritis (RA). Materials and methods included 50 patients with RA and 42 healthy people of appropriate age and gender, who analyzed the main clinical indicators. In erythrocytes, the activity of superoxide dismutase (SOD), glutathione peroxidase (GPO), glutathione reductase (GR) and the concentration of reduced glutathione (GSH) were investigated. The concentration of higher nitrogen oxides (NOx), endothelin-1 (ET-1) and vascular endothelial growth factor VEGF-A was determined in plasma. Results. In the general group of patients with RA, signs of oxidative stress (OS) were observed, expressed in a decrease in the activity of GPO, GR and SOD when compared with the control, and a positive correlation of ET-1 with VEGF-A (R=0.547, p=0.028) and ET-1 with RF ( R=0.578; p=0.024). ET-1 (R=0.622; p=0.031) and VEGF-A (R=0.627; p=0.016) correlated with the presence of joint erosion. Among patients with joint erosion, the level of VEGF-A correlated with the activity of the process (R=0.756; p=0.030), the level of plasma NOx (R=0.545; p=0.036) and the activity of GR (R=0.579; p=0.03). The ET-1 level in the blood plasma of patients with RA with joint erosion was 10.0 (4.4–10.0) ng / l and was higher than in patients without erosion (4.2 (2.3–17) ng/l). The level of plasma VEGF-A in patients with RA with joint erosion (62.8 (31.0–100.0) ng /l) was higher than in patients without erosion (20.4 (10.0–25.3) ng/l). Conclusions. A decrease in the concentration of GSH and the activity of GPO, GR and SOD indicate the presence of OS in patients with RA, regardless of the duration and activity of the disease. ET-1 and VEGF-A may be prognostic criteria for erosive RA.

About the Authors

L. A. Alexandrova
Pavlov University
Russian Federation

Alexandrova Ludmila A. – Cand. of Sci. (Biol.), senior researcher at the laboratory of biochemical monitoring of the Scientific and Educational Institute of Biomedicine

6-8 L’va Tolstogo str., Saint Petersburg, 197022



T. F. Subbotina
Pavlov University
Russian Federation

Subbotina Tatjana F. – Dr. of Sci. (Med.), Professor, head of the laboratory of biochemical monitoring at the Department of biochemistry of Scientific and Educational Institute of Biomedicine

6-8 L’va Tolstogo str., Saint Petersburg, 197022



N. A. Filippova
Pavlov University
Russian Federation

Filippova Nina A. – Cand. of Sci. (Med.), Docent, Associate Professor at the Department of hospital therapy with a course of allergology and immunology im. akad. M. V. Chernorutsky with the clinic

6-8 L’va Tolstogo str., Saint Petersburg, 197022



A. A. Zhloba
Pavlov University
Russian Federation

Zhloba Alexandr A. – Dr. of Sci. (Med.), Professor, head of the Department of biochemistry at Scientific and Educational Institute of Biomedicine

6-8 L’va Tolstogo str., Saint Petersburg, 197022



V. I. Trofimov
Pavlov University
Russian Federation

Trofimov Vasilij I. – Dr. of Sci. (Med.), Professor, head of the Department of hospital therapy with a course of allergology and immunology im. akad. M. V. Chernorutsky with the clinic

6-8 L’va Tolstogo str., Saint Petersburg, 197022



References

1. Petrishhev NN, Vasina LV, Vlasov TD et al. Tipovye formy disfunktsii endotelija. Kliniko-laboratornyi consilium. 2007;(18):31–35. (In Russ.).

2. Vasina LV, Vlasov TD, Petrishchev NN. Functional heterogeneity of the endothelium (the review). Arterial’naya Gipertenziya (Arterial Hypertension). 2017;23(2):88–102. (In Russ.). Doi: 10.18705/1607-419X-2017-23-2-88-102.

3. Vasina LV, Petrishchev NN, Vlasov TD. Markers of endothelial dysfunction. Regional blood circulation and microcirculation. 2017;16(1):4–15. (In Russ.). Doi: 10.24884/1682-6655-2017-16-1-4-15.

4. Lee Y, Kim J, Hong S et al. Synovial proliferation differentially affects hypoxia in the joint cavities of rheumatoid arthritis and osteoarthritis patients. Clin. Rheumatol. 2007;26(12):2023–2029. Doi: 10.1007/s10067-007-0605.

5. Sandoval YH, Atef ME, Levesque LO, Li Y et al. Endothelin-1 signaling in vascular physiology and pathophysiology. Curr Vasc Pharmacol. 2014;12(2):202–214.

6. Muller G, Goettsch C, Morawietz H. Oxidative stress and endothelial dysfunction. Hamostaseologie. 2007;27(1):5–12. Doi: 10.1055/s-0037-1616894.

7. Alexandrova LA, Filippova NA, Subbotina TF, Alekseevskaya ES, Zhloba AA, Trofimov VI. Evaluation of the oxidation – nitrosyl stress manifestations at systematic connective tissue diseases. The Scientific Notes of The Scientific Notes Of The Pavlov University. 2016;23(1):26–28. (In Russ.).

8. Garcia-Gonzalez A, Gaxiola-Robles R, Zenteno-Savin T. Oxidative stress in patients with rheumatoid arthritis. Rev. Invest. Clin. 2015;67(1):46–53.

9. Falk RJ, Terrell R.S, Charles LA, Jennette JC. An tineutrophil cytoplasmic autoantibodies induce neutrophils to degranulate and produce oxygen radicals in vitro. Proc. Natl. Acad. Sci USA. 1990;87(11):4115–4119. Doi: 10.1073/pnas.87.11.4115.

10. Martinon F. Signaling by ROS drives inflammasome activation. Eur. J. Immunol. 2010;40(3):616–619. Doi: 10.1002/eji.200940168.

11. Perricone C, Carolis CD and Perricone R. Glutathione: A key player in autoimmunity. Autoimmunity Reviews. 2009; 8(8):697–701. Doi: 10.1016/j.autrev.2009.02.020.

12. Alexandrova LA, Mironova JA, Agafonova UI et al. Glutathione metabolism of erythrocytes in the paroxysmal nocturnal hemoglobinuria. Regional blood circulation and microcirculation. 2015;14(4):60–65. (In Russ.). Doi: 10.24884/1682-6655-2015-14-4-60-65.

13. Yang Z, Shen Y, Oishi H et al. Restoring oxidant signaling suppresses pro-arthritogenic T-cell effector functions in rheumatoid arthritis. Sci Transl Med. 2016;8(331):331–338. Doi: 10.1126/scitranslmed.aad7151.

14. Azizi G, Boghozian R, Mirshafiey A. The potential role of angiogenic factors in rheumatoid arthritis. Int J Rheum Dis. 2014;17(4):369–383. Doi: 10.1111/1756-185X.12280.

15. Veikkola Т, Alitalo K. VEGFs, receptors and angiogenesis. Semin. Cancer Biol. 1999;9(3):211–220. Doi:10.1006/scbi.1998.0091.

16. Zhloba AA, Subbotina TF, Alekseevskaya ES et al. Biochem. Moscow Suppl. Ser. B. 2015;9(2):143–150. Doi: 10.1134/S1990750815020158.

17. Salvador G, Sanmarti R, Gil-Torregrosa B et al. Synovialvascular patterns and angiogenic factors expression in synovialtissue and serum of patients with rheumatoid arthritis. Rheumatology (Oxford). 2006;45(8):966–971. Doi: 10.1093/rheumatology/kel043.

18. Elshabrawy HA, Chen Z, Volin MV. The pathogenic role of angiogenesis in rheumatoid arthritis. Angiogenesis. 2015;18(4):433–448. Doi: 10.1007/s10456-015-9477-2.

19. Clavel G, Bessis N, Lemeiter D. Clinical Immunology. Angiogenesis markers (VEGF, soluble receptor of VEGF and angiopoietin-1) in very early arthritis and their association with inflammation and joint destruction. Clinical Immunology. 2007;124(2):158–164. Doi: 10.1016/j.clim.2007.04.014.

20. Jeon CH, Ahn JK, Chai JY et al. Hypoxia appears at pre-arthritic stage and shows co-localization with early synovial inflammation in collagen induced arthritis. Clin Exp Rheumatol. 2008;26(4):646–648.

21. Hua S, Dias T. Hypoxia-Inducible Factor (HIF) as a Target for Novel Therapies in Rheumatoid Arthritis. Front Pharmacol. 2016;27(7):184. Doi: 10.3389/fphar.2016.00184.

22. Ballara S, Taylor PC, Reusch P et al. Raised serum vascular endothelial growth factor levels are associated with destructive change in inflammatory arthritis. Arthr. Rheum. 2001;44(9):2055–2064. Doi: 10.1002/1529-0131(200109)44:9<2055::AID-ART355>3.0.CO;2-2.

23. FitzGerald O, Soden М, Yanni G et al. Morphometric analysis of blood vessels in synovial membranes obtained from clinically affected and unaffected knee joints of patients with rheumatoid arthritis. Ann. Rheum. Dis. 1991;50(11):792–796. Doi: 10.1136/ard.50.11.792.

24. Yang X, Chang Y, Wei W. Endothelial Dysfunction and Inflammation: Immunity in Rheumatoid Arthritis. Mediators Inflamm. 2016;2016:6813016. Doi: 10.1155/2016/6813016.

25. Zamora R, Vodovotz V, Billiar TR. Inducible nitric oxide synthase and inflammatory diseases. Molec. Med. 2000; 6(5):347–373.

26. Al-Ramadi BK, Meissler JJ, Huang D, Eisenstein TK. Immunosuppression induced by nitric oxide and its inhibition by interleukin-4. Eur. J. Immunol. 1992;22(9):2249–2254. Doi: 10.1002/eji.183022091.

27. Nagy G, Koncz A, Telarico T et al. Central role of nitric oxide in pathogenesis of rheumatoid arthritis and systemic lupus erythematosus. Arthritis Res Ther. 2010;12(3):210–216. Doi: 10.1186/ar3045.

28. Vaudo G, Marchesi S, Gerli R et al. Endothelial dysfunction in young patients with rheumatoid arthritis and low disease activity. Annals of the Rheumatic Diseases. 2004; 63:31–35.

29. Kowalczyk A, Kleniewska P, Kolodziejczyk M et al. The role of endothelin-1 and endothelin receptor antagonists in inflammatory response and sepsis. Arch. Immunol. Ther. Exp. 2015;63:41–52.

30. Houde M, Desbiens L, D’Orléans-Juste P et al. Endothelin-1: Biosynthesis, Signaling and Vasoreactivity. Adv Pharmacol. 2016;77:143–175. Doi: 10.1016/bs.apha.2016.05.002.

31. Idris-Khodja N, Ouerd S, Trindade M et al. Vascular smooth muscle cell peroxisome proliferator-activated receptor γ protects against endothelin-1-induced oxidative stress and inflammation. J Hypertens. 2017;35(7):1390–1401. Doi: 10.1097/HJH.0000000000001324.

32. Petrishchev NN, Vasina LV, Sapegin AA et al. The diagnostic significance of determining the content of endothelial damage factors for assessing the severity of endothelial dysfunction in acute coronary syndrome. Klinicheskaya bol’nitsa [The Hospital]. 2015;1(11):41–45. (In Russ.).

33. Idris-Khodja N, Ouerd S, Mian MOR et al. Endothelin-1 Overexpression Exaggerates Diabetes-Induced Endothelial Dysfunction by Altering Oxidative Stress. Am J Hypertens. 2016;29(11):1245–1251. Doi: 10.1093/ajh/hpw078.

34. Shichiri M. Endothelin-1 is a potent survival factor for c-Myc-dependent apoptosis. Mol. Endocrin. 1998;12(2):172–180. Doi: 10.1210/mend.13.8.0324.

35. Shihoya W, Nishizawa T, Okuta A. Activation mechanism of endothelin ETB receptor by endothelin-1. Nature. 2016;537(7620):363–368. Doi: 10.1038/nature19319.

36. Latour F, Zabraniecki L, Dromer C et al. Does vascular endothelial growth factor in the rheumatoid synovium predict joint destruction? A clinical, radiological, and pathological study in patients monitored for 10 yars. Joint Bone Spine. 2001;68(6):493–498.

37. Alexandrova LA, Filippova NA, Iman A, Subbotina TF, Zhloba AA, Trofimov VI. Interrelationship of the mediator of angiogenesis of VEGF-A with glutathione metabolism parameters and the clinical characteristics of systemic autoimmune diseases with joint damage. The Scientific Notes Of The Pavlov University. 2018;25(4):64–69. (In Russ.). Doi: 10.24884/1607-41812018-25-4-64-69.

38. Black SM, Fineman JR. Oxidative and nitrosative stress in pediatric pulmonary hypertension: roles of endothelin-1 and nitric oxide. Vascul Pharmacol. 2006;45(5):308–316. Doi: 10.1016/j.vph.2006.08.005.

39. Saleh MA, De Miguel C, Stevens DI et al. Free radical scavenging decreases endothelin-1 excretion and glomerular albumin permeability during type 1 diabetes. Physiological Reports. 2016;4(24):[e13055]. Doi: 10.14814/phy2.13055.


Review

For citations:


Alexandrova L.A., Subbotina T.F., Filippova N.A., Zhloba A.A., Trofimov V.I. The relationship of endothelial vasoregulation factors and the state of the antioxidant system with manifestations of rheumatoid arthritis. Regional blood circulation and microcirculation. 2020;19(1):60-66. (In Russ.) https://doi.org/10.24884/1682-6655-2020-19-1-60-66

Views: 970


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-6655 (Print)
ISSN 2712-9756 (Online)