Preview

Regional blood circulation and microcirculation

Advanced search

The change of wavelet spectrum during autoregulation of cerebral blood flow

https://doi.org/10.24884/1682-6655-2013-12-3-47-52

Abstract

We studied the changes of wavelet spectrum in cerebral blood flow during regulated hypovolemia produced by step hemorrhage. Cerebral blood flow was investigated by laser Doppler flowmetry. It was found the increase in amplitude of neurogenic and endothelial waves, but amplitude in myogenic wave was not changes.

About the Author

V. V. Aleksandrin
Institute of General Pathology and Pathophysiology
Russian Federation


References

1. Александрин В. В. Миогенное звено в ауторегуляции церебрального кровотока // Регионарное кровообращение и микроциркуляция. 2007. Т. 6. № 1. С. 148-149.

2. Александрин В. В., Александров П. Н., Хугаева В. К. Влияние адреноблокаторов на реактивность микрососудов мозга при ишемии // Фармакология мозгового кровообращения. М.: ВИНИТИ, 1991. С. 112-115.

3. Александрин В. В., Лузянин Б. П., Иванов А. В., Кубатиев А. А. Влияние гипергомоцистеинемии на мозговой кровоток по данным вейвлет-анализа //Патологическая физиология и экспериментальная терапия. 2011. № 2. С. 13-18.

4. Дисфункция эндотелия: причины, механизмы, фармакологическая коррекция / под ред. Н. Н. Петрищева. СПб.: СПбГМУ, 2003. 184 с.

5. Лазерная допплеровская флоуметрия микроциркуляции крови / под ред. А. И. Крупаткина, В. В. Сидорова. М.: Медицина, 2009. 254 с.

6. Attwell D., Buchan A. M., Charpak S. et al. Glial and neuronal control of brain blood flow // Nature. 2010. Vol. 468 (7321). P. 232-243.

7. Bauser-Heaton H. D., Bohlen H. G. Cerebral microvascular dilation during hypotension and decreased oxygen tension: a role for nNOS // Am. J. Physiol. 2007. Vol. 293. P. H2193-H2201.

8. Jones S. C., Easley K. A., Radinsky C. R. et al. Nitric oxide synthase inhibition depresses the height of the cerebral blood flow-pressure autoregulation curve during moderate hypotension // J. Cereb. Blood Flow Metab. 2003. Vol. 23. P. 1085-1095.

9. Koller A., Toth P. Contribution of Flow-Dependent Vasomotor Mechanisms to the Autoregulation of Cerebral Blood Flow // J. Vasc. Res. 2012. Vol. 49. P. 375-389.

10. Landsverk S. A., Kvandal P., Stefanovzka A., Kirkeboen K. A. The effects of general anesthesia on human skin microcirculation evaluated by wavelet transform // Anesthesia and analgesia. 2007. Vol. 105. P 1012-1019.

11. Li Z., Tam E. W., Kwan M. P. et al. Effects of prolonged surface pressure on the skin blood flow motions in anaesthetized rats - an assessment by spectral analysis of laser Doppler flowmetry signals // Phys. Med. Biol. 2006. Vol. 51. P. 2681-2694.

12. Mufti R. E., Brett S. E., Tran C. T. et al. Intravascular pressure augments cerebral arterial constriction by inducing voltage-insensitive Ca 2+ waves // J. Physiol. 2010. Vol. 588. № 20. P. 3983-3993.

13. Peng H. Hypothesis for the initiation of vasomotion // Circ. Res. 2001. Vol. 88. P. 810-815.

14. Zilles K. The cortex of the rat. A stereotaxic atlas. Berlin, 1985.


Review

For citations:


Aleksandrin V.V. The change of wavelet spectrum during autoregulation of cerebral blood flow. Regional blood circulation and microcirculation. 2013;12(3):47-52. (In Russ.) https://doi.org/10.24884/1682-6655-2013-12-3-47-52

Views: 344


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-6655 (Print)
ISSN 2712-9756 (Online)