Preview

Regional blood circulation and microcirculation

Advanced search

Thermal imaging of the skin blood flow oscillations in extremities: modification of the spectral components

https://doi.org/10.24884/1682-6655-2015-14-1-46-52

Abstract

Objective. The aim of the study was description of the method of skin blood flow imaging via spectral processing of the dynamic thermograms of extremities. Materials and methods. The method realized by decomposition of the temperature signal into spectral components, modification of the spectral components and inverse transform of the spectral components into a new signal, which is considered as blood flow. Modification of spectral components was accomplished taking into account skin properties, and intended for the compensation of attenuation and time lag of temperature spectral components relative to blood flow components. Results. Blood flow maps of hands during arm cuff test have been demonstrated. Blood flow values calculated from the dynamic thermogram have been validated by photoplethysmography. The technique allows restoring of the blood flow oscillations at any point of the thermogram of the object. Benefits of thermal imaging of blood flow are the following: results are not depended from the ambient light, the method not critical to the camera angle, and blood flow maps can be registered both from the whole body and small areas. The method of blood flow imaging, in a long view, applicable for the monitoring of the skin microcirculation in progression and treatment of diabetic foot syndrome, Raynaud's syndrome, as well as burn, frostbite, mechanical injury, and atherosclerosis.

About the Authors

A. A. Sagaidachnyi
Saratov State University
Russian Federation


D. A. Usanov
Saratov State University
Russian Federation


A. V. Skripal
Saratov State University
Russian Federation


A. V. Fomin
Saratov State University
Russian Federation


References

1. Сагайдачный А. А. Методика восстановления фотоплетизмограммы в диапазоне эндотелиальных и нейрогенных колебаний по результатам измерений температуры пальцев рук / А. А. Сагайдачный, А. В. Скрипаль, A. В. Фомин, Д. А. Усанов // Регионарное кровообращение и микроциркуляция. 2013. № 3. С. 22-28.

2. Усанов Д. А. Взаимосвязь колебаний температуры и кровотока пальцев рук / Д. А. Усанов, А. А. Сагайдачный, А. B. Скрипаль, А. В. Фомин // Регионарное кровообращение и микроциркуляция. 2012. № 2. С. 37-42.

3. Allen J., Howell K. Microvascular imaging: techniques and opportunities for clinical physiological measurements // Physiological measurement. 2014. Vol. 35. № 7. P. R91.

4. Boue C. Thermal imaging of a vein of the forearm: Analysis and thermal modeling / C. Boue, F. Cassagne, C. Massoud, D. Fournier // Infrared Physics & Technology. 2007. Vol. 51. № 1. P. 13-20.

5. Bouzida N., Bendada A. H., Piau J. M. et al. Using lock-in infrared thermography for the visualization of the hand vascular tree // SPIE Defense and Security Symposium. International Society for Optics and Photonics. 2008. March. P. 69390O-69390O.

6. Bouzida N., Bendada A., Maldague X. P Visualization of body thermoregulation by infrared imaging // J. of Thermal Biology. 2009. Vol. 34. № 3. P. 120-126.

7. Francis J. E. Thermography as a means of blood perfusion measurement / J. E. Francis, R. Roggli, T. J. Love, C. P Robinson // J. of Biomechanical Engineering. 1979. Vol. 101. № 4. P. 246-249.

8. Gorbach A. M., Wang H., Wiedenbeck B. et al. Functional assessment of hand vasculature using infrared and laser speckle imaging // SPIE BiOS: Biomedical Optics. International Society for Optics and Photonics. 2009. Feb. P. 716919-716919.

9. Gul K. M., Ahmadi N., Wang Z. et al. Digital thermal monitoring of vascular function: a novel tool to improve cardiovascular risk assessment // Vascular Medicine. 2009. Vol. 14. № 2. P. 143-148.

10. Harrison D. K., Cook A. I. M. Detection of skin blood flow heterogeneity using functional parametric thermographic imaging // International Symposium on Biomedical Optics. International Society for Optics and Photonics. 2002. P. 170-177.

11. Jiang S. C. Effects of thermal properties and geometrical dimensions on skin burn injuries /S. C. Jiang, N. Ma, H. J. Li, X. X. Zhang // Burns. 2002. № 28. Р. 713-717.

12. Ley O., Deshpande C. V. Comparison of two mathematical models for the study of vascular reactivity // Computers in Biology and Medicine. 2009. Vol. 39. № 7. P. 579-589.

13. Liu W. M., Maivelett J., Kato G. J. et al. Reconstruction of thermographic signals to map perforator vessels in humans // Quantitative infrared thermography journal. 2012. Vol. 9. № 2. P. 123-133.

14. Love T. J. Thermography as an indicator of blood perfusion // Annals of the New York Academy of Sciences. 1980. Vol. 335. № 1. P. 429-437.

15. Sagaidachnyi А. А. Determination of the amplitude and phase relationships between oscillations in skin temperature and photoplethysmography - measured blood flow in fingertips/A. A. Sagaidachnyi, А. V. Skripal, A. V. Fomin. D. A. Usanov // Physiological measurement. 2014. Vol. 35. № 2. P. 153-166.

16. Wilson S. B., Spence V. A. Dynamic thermographic imaging method for quantifying dermal perfusion: potential and limitations // Medical and Biological Engineering and Computing. 1989. Vol. 27. № 5. P. 496-501.

17. Wu D. Lockin thermography for imaging of modulated flow in blood vessels / D. Wu, H. Hamann, A. Salerno, G. Busse // QIRT. Pisa, Italy, 1996. P. 343-347.


Review

For citations:


Sagaidachnyi A.A., Usanov D.A., Skripal A.V., Fomin A.V. Thermal imaging of the skin blood flow oscillations in extremities: modification of the spectral components. Regional blood circulation and microcirculation. 2015;14(1):46-52. (In Russ.) https://doi.org/10.24884/1682-6655-2015-14-1-46-52

Views: 646


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-6655 (Print)
ISSN 2712-9756 (Online)