Preview

Регионарное кровообращение и микроциркуляция

Расширенный поиск

Механизмы развития острого ишемического повреждения головного мозга: клинические и экспериментальные возможности его коррекции

https://doi.org/10.24884/1682-6655-2021-20-2-5-19

Полный текст:

Аннотация

В обзоре рассмотрены современные представления о развитии ишемического повреждения головного мозга и основные терапевтические подходы. В настоящее время очерчен круг патологических факторов, влияющих на выживание нейронов и глиальных клеток в очаге ишемии: деполяризация, цитотоксический и вазогенный отек, кальциевая перегрузка, эксайтотоксичность, воспаление, повреждение свободными радикалами. Эффективная и быстрая реперфузия существенно улучшает состояние пациентов, но другие подходы к лечению инфаркта не вошли в клиническую практику. Исследуются десятки препаратов, направленных на компенсацию отдельных патогенетических звеньев инфаркта (нейропротекторы), но они оказываются неэффективны в крупных клинических исследованиях.
Причиной неэффективности нейропротекторных препаратов может быть недостаточное понимание значения мишени лекарственного средства. Многие эффективные в доклинических исследованиях препараты не были изучены в крупных клинических исследованиях. Дополнительные патогенетические механизмы, описанные в последнее десятилетие, расширяют наши знания о природе инфаркта головного мозга и могут служить перспективными направлениями для разработки новых терапевтических подходов.

Об авторах

Е. В. Иванов
Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный университет имени М. В. Ломоносова»
Россия

Иванов Евгений Викторович – канд. мед. наук, преподаватель кафедры физиологии и общей патологии факультета фундаментальной медицины 

119991, Москва, Ленинские горы, д. 1



С. А. Гаврилова
Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный университет имени М. В. Ломоносова»
Россия

Гаврилова Светлана Анатольевна – д-р биол. наук, доцент, доцент кафедры физиологии и общей патологии факультета фундаментальной медицины 

119991, Москва, Ленинские горы, д. 1



В. Б. Кошелев
Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный университет имени М. В. Ломоносова»
Россия

Кошелев Владимир Борисович – д-р биол. наук, профессор, зав. кафедрой физиологии и общей патологии факультета фундаментальной медицины 

119991, Москва, Ленинские горы, д. 1



Список литературы

1. Lindsay MP, Norrving B, Sacco RL, Brainin M, Hacke W, Martins S. et al. World Stroke Organization (WSO): Global Stroke Fact Sheet 2019. Int J Stroke. 2021;14(8):806–817. Doi: 10.1177/1747493019881353.

2. Hu S, Cui B, Mlynash M, Zhang X, Mehta KM, Lansberg MG. Stroke epidemiology and stroke policies in China from 1980 to 2017: A systematic review and meta-analysis. Vol. 15, International Journal of Stroke. SAGE Publications Inc. 2020: 18–28. Doi: 10.1177/1747493019873562.

3. Wang YJ, Li ZX, Gu HQ, Zhai Y, Jiang Y, Zhao XQ. et al. China Stroke Statistics 2019: A Report from the National Center for Healthcare Quality Management in Neurological Diseases, China National Clinical Research Center for Neurological Diseases, the Chinese Stroke Association, National Center for Chronic and. Stroke Vasc Neurol. 2020;5(3):211– 239. Doi: 10.1136/svn-2020-000457.

4. Feigin VL. Anthology of stroke epidemiology in the 20th and 21st centuries: Assessing the past, the present, and envisioning the future. Int J Stroke. 2019;14(3):223–237. Doi: 10. 1177/1747493019832996.

5. WHO. Priority Medicines for Europe and the World 2013 Update. Available at: https://www.who.int/medicines/areas/priority_medicines/Ch6_6Stroke.pdf.2013 (accessed: 15.0.2021).

6. Mohr JP, Albers GW, Amarenco P, Babikian VL, Biller J, Brey RL. et al. Etiology of stroke. In: Stroke. Lippincott Williams and Wilkins. 1997:1501–1506. Doi: 10.1161/01.str.28.7.1501.

7. Monroe J. Ischemic stroke. MEDSURG Nurs. 2020; 29(4):278–279. Doi: 10.5005/jp/books/12952_6.

8. Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K. et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke a guideline for healthcare professionals from the American Heart Association/American Stroke. Lippincott Williams and Wilkins. 2019;(50):E344–E418. Doi: 10.1161/STR.0000000000000211.

9. Ringleb PA, Bousser MG, Ford G, Bath P, Brainin M, Caso V. et al. Guidelines for management of ischaemic stroke and transient ischaemic attack. Cerebrovascular Diseases. S. Karger AG. 2008;(25):457–507. Doi: 10.1159/000131083.

10. Kobayashi A, Czlonkowska A, Ford GA, Fonseca AC, Luijckx GJ, Korv J. et al. European Academy of Neurology and European Stroke Organization consensus statement and practical guidance for pre-hospital management of stroke. Eur J Neurol. 2018;25(3):425–433. Doi: 10.1111/ene.13539.

11. Berge E, Whiteley W, Audebert H, Marchis GM De, Fonseca AC, Padiglioni C. et al. European Stroke Organisation (ESO) guidelines on intravenous thrombolysis for acute ischaemic stroke. Eur Stroke J. 2021:239698732198986. Doi: 10.1177/2396987321989865.

12. Turc G, Bhogal P, Fischer U, Khatri P, Lobotesis K, Mazighi M. et al. European Stroke Organisation (ESO) – European Society for Minimally Invasive Neurological Therapy (ESMINT) Guidelines on Mechanical Thrombectomy in Acute Ischaemic StrokeEndorsed by Stroke Alliance for Europe (SAFE). Eur Stroke J. 2019;4(1):6–12. Doi: 10. 1177/2396987319832140.

13. Neves G, Stickles J, Bueso T, DeToledo JC, Xu KT. Antihypertensive use for stroke in United States emergency departments. J Am Coll Emerg Physicians Open. 2020;1(6):1467– 1471. Doi: 10.1002/emp2.12312.

14. Gorelick PB, Aiyagari V. The management of hypertension for an acute stroke: What is the blood pressure goal? Curr Cardiol Rep. 2013;15(6). Doi: 10.1007/s11886-013-0366-2.

15. Nukui S, Akiyama H, Soga K, Takao N, Tsuchihashi Y, Iijima N. et al. Risk of Hyperglycemia and Hypoglycemia in Patients with Acute Ischemic Stroke Based on Continuous Glucose Monitoring. J Stroke Cerebrovasc Dis. 2019;28(12). Doi: 10.1016/j.jstrokecerebrovasdis.2019.104346.

16. Johnston KC, Bruno A, Pauls Q, Hall CE, Barrett KM, Barsan W. et al. Intensive vs Standard Treatment of Hyperglycemia and Functional Outcome in Patients with Acute Ischemic Stroke: The SHINE Randomized Clinical Trial. JAMA – J Am Med Assoc. 2019;322(4):326–335. Doi: 10.1001/jama.2019.9346.

17. Michinaga S, Koyama Y. Pathogenesis of brain edema and investigation into anti-edema drugs. International Journal of Molecular Sciences. MDPI AG. 2015;(16):9949–9975. Doi: 10.3390/ijms16059949.

18. Battey TWK, Karki M, Singhal AB, Wu O, Sadaghiani S, Campbell BCV. et al. Brain edema predicts outcome after nonlacunar ischemic stroke. 2014;45(12):3643–3648. Doi: 10.1161/STROKEAHA.114.006884.

19. Leinonen V, Vanninen R, Rauramaa T. Raised intracranial pressure and brain edema. In: Handbook of Clinical Neurology. Elsevier B.V. 2018:25–37. Doi: 10.1016/B978-0-12-802395-2.00004-3.

20. Wijdicks EFM, Sheth KN, Carter BS, Greer DM, Kasner SE, Kimberly WT. et al. Recommendations for the management of cerebral and cerebellar infarction with swelling: A statement for healthcare professionals from the American Heart Association / American Stroke Association. 2014;45(4):1222– 1238. Doi: 10.1161/01.str.0000441965.15164.d6.

21. Dostovic Z, Dostovic E, Smajlovic D, Ibrahimagic OC, Avdic L. Brain Edema After Ischaemic Stroke. Med Arch (Sarajevo, Bosnia Herzegovina). 2016;70(5):339–341. Doi: 10.5455/medarh.2016.70.339-341.

22. Zhou Z, Lu J, Liu WW, Manaenko A, Hou X, Mei Q. et al. Advances in stroke pharmacology [Internet]. Vol. 191, Pharmacology and Therapeutics. Elsevier Inc. 2018:23–42. Doi: 10.1016/j.pharmthera.2018.05.012.

23. Neuhaus AA, Couch Y, Hadley G, Buchan AM. Neuroprotection in stroke: The importance of collaboration and reproducibility. Brain. Oxford University Press. 2017; (140):2079–2092. Doi: 10.1093/brain/awx126.

24. Chamorro Á, Dirnagl U, Urra X, Planas AM. Neuroprotection in acute stroke: Targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. The Lancet Neurology. Lancet Publishing Group. 2016;(15):869–881. Doi: 10. 1016/S1474-4422(16)00114-9.

25. Patel RAG, McMullen PW. Neuroprotection in the Treatment of Acute Ischemic Stroke. Progress in Cardiovascular Diseases. W.B. Saunders. 2017;(59):542–548. Doi: 10. 1016/j.pcad.2017.04.005.

26. Patrice Lindsay M, Norrving B, Sacco RL, Brainin M, Hacke W, Martins S. et al. World Stroke Organization (WSO): Global Stroke Fact Sheet. Available at: mozextension://0b800faa-46d4-0c4c-b1ab-035d7edb55b4/enhanced-reader.html?openApp&pdf=https%3A%2F%2Fwww.world-stroke.org%2Fassets%2Fdownloads%2FWSO_Factsheet_1.2019 (accessed: 15.02.2021).

27. Murphy BD, Fox AJ, Lee DH, Sahlas DJ, Black SE, Hogan MJ. et al. White matter thresholds for ischemic penumbra and infarct core in patients with acute stroke: CT perfusion study. Radiology. 2008;247(3):818–825. Doi: 10.1148/radiol.2473070551.

28. Murphy BD, Fox AJ, Lee DH, Sahlas DJ, Black SE, Hogan MJ. et al. Identification of penumbra and infarct in acute ischemic stroke using computed tomography perfusionderived blood flow and blood volume measurements. Stroke. 2006;37(7):1771–1777. Doi: 10.1161/01.STR.0000227243.96808.53.

29. Bandera E, Botteri M, Minelli C, Sutton A, Abrams KR, Latronico N. Cerebral blood flow threshold of ischemic penumbra and infarct core in acute ischemic stroke: A systematic review. Stroke. Lippincott Williams & Wilkins; 2006;(37):1334–1339. Doi: 10.1161/01.STR.0000217418.29609.22.

30. Mandalaneni K, Rayi A, Jillella DV. Stroke Reperfusion Injury // StatPearls. StatPearls Publishing Publishing LLC, 2020.

31. Tuttolomondo A, Maida C, Pinto A. Inflammation and Inflammatory Cell Recruitment in Acute Cerebrovascular Diseases. Curr Immunol Rev. 2015;11(1):24–32. Doi: 10.2174/1 57339551101150417101550.

32. Orellana-Urzúa S, Rojas I, Líbano L, Rodrigo R. Pathophysiology of Ischemic Stroke: Role of Oxidative Stress. Curr Pharm Des. 2020;26(34):4246–4260. Doi: 10.2174/1381612826666200708133912.

33. Lai TW, Zhang S, Wang YT. Excitotoxicity and stroke: Identifying novel targets for neuroprotection. Progress in Neurobiology. Elsevier Ltd. 2014;(115):157–188. Doi: 10.1016/j.pneurobio.2013.11.006.

34. Pivovarova NB, Nguyen HV, Winters CA, Brantner CA, Smith CL, Andrews SB. Excitotoxic calcium overload in a subpopulation of mitochondria triggers delayed death in hippocampal neurons. J Neurosci. 2004;24(24):5611–5622. Doi: 10.1523/JNEUROSCI.0531-04.2004.

35. Zhang YP, Zhang H, Duan DD. Chloride channels in stroke. Acta Pharmacologica Sinica. Acta Pharmacol Sin. 2013;(34):17–23. Doi: 10.1038/aps.2012.140.

36. Simard JM, Tarasov KV, Gerzanich V. Non-selective cation channels, transient receptor potential channels and ischemic stroke. Biochimica et Biophysica Acta – Molecular Basis of Disease. Biochim Biophys Acta. 2007;(1772):947– 957. Doi: 10.1016/j.bbadis.2007.03.004.

37. Taş YÇ, Solaroğlu İ, Gürsoy-Özdemir Y. Spreading Depolarization Waves in Neurological Diseases: A Short Review about its Pathophysiology and Clinical Relevance. Curr Neuropharmacol. 2018;17(2):151–164. Doi: 10.2174/1570159x15666170915160707.

38. Singh V, Mishra VN, Chaurasia RN, Joshi D, Pandey V. Modes of Calcium Regulation in Ischemic Neuron. Indian Journal of Clinical Biochemistry. Springer. 2019;(34):246– 253. Doi: 10.1007/s12291-019-00838-9.

39. Khoshnam SE, Winlow W, Farzaneh M, Farbood Y, Moghaddam HF. Pathogenic mechanisms following ischemic stroke. Neurological Sciences. Springer-Verlag Italia s.r.l. 2017;(38):1167–1186. Doi: 10.1007/s10072-017-2938-1.

40. Doyle KP, Simon RP, Stenzel-Poore MP. Mechanisms of ischemic brain damage. Neuropharmacology. 2008;55(3):310– 318. Doi: 10.1016/j.neuropharm.2008.01.005.

41. Stegner D, Hofmann S, Schuhmann MK, Kraft P, Herrmann AM, Popp S. et al. Loss of Orai2-Mediated Capacitative Ca2+ Entry Is Neuroprotective in Acute Ischemic Stroke. 2019;50(11):3238–3245. Doi: 10.1161/STROKEAHA.119.025357.

42. Sekerdag E, Solaroglu I, Gursoy-Ozdemir Y. Cell Death Mechanisms in Stroke and Novel Molecular and Cellular Treatment Options. Curr Neuropharmacol. 2018;16(9):1396–1415. Doi: 10.2174/1570159x16666180302115544.

43. Hao Y, Xin M, Feng L, Wang X, Wang X, Ma D. et al. Review Cerebral Ischemic Tolerance and Preconditioning: Methods, Mechanisms, Clinical Applications, and Challenges. Frontiers in Neurology. Frontiers Media S.A. 2020;(11). Doi: 10.3389/fneur.2020.00812.

44. Stepien KM, Heaton R, Rankin S, Murphy A, Bentley J, Sexton D. et al. Evidence of Oxidative Stress and Secondary Mitochondrial Dysfunction in Metabolic and Non-Metabolic Disorders. J Clin Med. 2017;6(7):71. Doi: 10.3390/jcm6070071.

45. Morris DR, Levenson CW. Neurotoxicity of Zinc. In: Advances in Neurobiology. Springer New York LLC. 2017:303– 312. Doi: 10.1007/978-3-319-60189-2_15.

46. Dreier JP, Fabricius M, Ayata C, Sakowitz OW, William Shuttleworth C, Dohmen C. et al. Recording, analysis, and interpretation of spreading depolarizations in neurointensive care: Review and recommendations of the COSBID research group. Journal of Cerebral Blood Flow and Metabolism. Nature Publishing Group. 2017;(37):1595–1625. Doi: 10.1177/0271678X16654496.

47. Ayata C, Lauritzen M. Spreading depression, spreading depolarizations, and the cerebral vasculature. Physiol Rev. 2015;95(3):953–993. Doi: 10.1152/physrev.00027.2014.

48. Obermeier B, Daneman R, Ransohoff RM. Development, maintenance and disruption of the blood-brain barrier. Nature Medicine. Nat Med. 2013;(19):1584–1596. Doi: 10.1038/nm.3407.

49. Szalay G, Martinecz B, Lénárt N, Környei Z, Orsolits B, Judák L. et al. Microglia protect against brain injury and their selective elimination dysregulates neuronal network activity after stroke. Nat Commun. 2016:7. Doi: 10.1038/ncomms11499.

50. Pekny M, Wilhelmsson U, Pekna M. The dual role of astrocyte activation and reactive gliosis. Neuroscience Letters. Elsevier Ireland Ltd. 2014;(565):30–38. Doi: 10.1016/j.neulet.2013.12.071.

51. Banasiak KJ, Xia Y, Haddad GG. Mechanisms underlying hypoxia-induced neuronal apoptosis. Progress in Neurobiology. Prog Neurobiol. 2000;(62):215–249. Doi: 10.1016/S0301-0082(00)00011-3.

52. Bailey DM. Oxygen and brain death; back from the brink. Experimental Physiology. Blackwell Publishing Ltd. 2019;(104):1769–1779. Doi: 10.1113/EP088005.

53. de Souza Pagnussat A, Faccioni-Heuser MC, Netto CA, Achaval M. An ultrastructural study of cell death in the CA1 pyramidal field of the hippocapmus in rats submitted to transient global ischemia followed by reperfusion. J Anat. 2007;211(5):589–599. Doi: 10.1111/j.1469-7580.2007.00802.x.

54. Bano D, Nicotera P. Ca2+ signals and neuronal death in brain ischemia. In: Stroke. 2007:674–676. Doi: 10.1161/01.STR.0000256294.46009.29.

55. Xu C, Bailly-Maitre B, Reed JC. Endoplasmic reticulum stress: Cell life and death decisions. Journal of Clinical Investigation. American Society for Clinical Investigation. 2005;(115):2656–2664. Doi: 10.1172/JCI26373.

56. Urano F, Wang XZ, Bertolotti A, Zhang Y, Chung P, Harding HP. et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science. 2000;287(5453):664–666. Doi: 10.1126/science.287.5453.664.

57. Yilmaz G, Granger DN. Cell adhesion molecules and ischemic stroke. Neurological Research. NIH Public Access. 2008;(30):783–93. Doi: 10.1179/174313208X341085.

58. Edinger AL, Thompson CB. Death by design: Apoptosis, necrosis and autophagy. Current Opinion in Cell Biology. Curr Opin Cell Biol. 2004;(16):663–669. Doi: 10.1016/j.ceb.2004.09.011.

59. Liu L, Kearns KN, Eli I, Sharifi KA, Soldozy S, Carlson EW. et al. Microglial Calcium Waves during the Hyperacute Phase of Ischemic Stroke. 2021;52(1):274–283. Doi: 10.1161/STROKEAHA.120.032766.

60. Rakers C, Petzold GC. Astrocytic calcium release mediates peri-infarct depolarizations in a rodent stroke model. J Clin Invest. 2017;127(2):511–516. Doi: 10.1172/JCI89354.

61. Igarashi H, Huber VJ, Tsujita M, Nakada T. Pretreatment with a novel aquaporin 4 inhibitor, TGN-020, significantly reduces ischemic cerebral edema. Neurol Sci. 2011;32(1):113–116. Doi: 10.1007/s10072-010-0431-1.

62. Bhattacharya P, Pandey AK, Paul S, Patnaik R, Yavagal DR. Aquaporin-4 Inhibition Mediates Piroxicam-Induced Neuroprotection against Focal Cerebral Ischemia/Reperfusion Injury in Rodents. PLoS ONE. Public Library of Science. 2013:(8). Doi: 10.1371/journal.pone.0073481.

63. Jayakumar AR, Norenberg MD. The Na-K-Cl Co-transporter in astrocyte swelling. In: Metabolic Brain Disease. Metab Brain Dis. 2010:31–38. Doi: 10.1007/s11011-010-9180-3.

64. Simard JM, Woo SK, Tsymbalyuk N, Voloshyn O, Yurovsky V, Ivanova S. et al. Glibenclamide-10-h Treatment Window in a Clinically Relevant Model of Stroke. Transl Stroke Res. 2012;3(2):286–295. Doi: 10.1007/s12975-012-0149-x.

65. Zweckberger K, Hackenberg K, Jung CS, Hertle DN, Kiening KL, Unterberg AW. et al. Glibenclamide reduces secondary brain damage after experimental traumatic brain injury. Neuroscience. 2014;(272):199–206. Doi: 10.1016/j. neuroscience.2014.04.040.

66. Huang K, Hu Y, Wu Y, Ji Z, Wang S, Lin Z. et al. Exploratory analysis of oral glibenclamide in acute ischemic stroke. Acta Neurol Scand. 2019;140(3):212–218. Doi: 10.1111/ane.13134.

67. Berliocchi L, Bano D, Nicotera P. Ca2+ signals and death programmes in neurons // Philosophical Transactions of the Royal Society B: Biological Sciences. Royal Society. 2005:2255–2258. Doi: 10.1098/rstb.2005.1765.

68. Szydlowska K, Tymianski M. Calcium, ischemia and excitotoxicity. Cell Calcium. Elsevier Ltd. 2010;(47):122–129. Doi: 10.1016/j.ceca.2010.01.003.

69. De Stefani D, Rizzuto R, Pozzan T. Enjoy the Trip: Calcium in Mitochondria Back and Forth. Annu Rev Biochem. 2016;(85):161–192. Doi: 10.1146/annurev-biochem-060614-034216.

70. Puig B, Brenna S, Magnus T. Molecular communication of a dying neuron in stroke. International Journal of Molecular Sciences. MDPI AG. 2018:(19). Doi: 10.3390/ijms19092834.

71. Vyklicky V, Korinek M, Smejkalova T, Balik A, Krausova B, Kaniakova M. et al. Structure, function, and pharmacology of NMDA receptor channels. Physiological Research. Physiol Res; 2014:(63). Doi: 10.33549/physiolres.932678.

72. Lau A, Tymianski M. Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Archiv European Journal of Physiology. Pflugers Arch. 2010;(460):525–542. Doi: 10. 1007/s00424-010-0809-1.

73. Wu QJ, Tymianski M. Targeting nmda receptors in stroke: New hope in neuroprotection Tim Bliss. Molecular Brain. BioMed Central Ltd. 2018:(11). Doi: 10.1186/s13041-018-0357-8.

74. Parsons MP, Raymond LA. Extrasynaptic NMDA receptor involvement in central nervous system disorders. Neuron. Cell Press. 2014;(82):279–293. Doi: 10.1016/j.neuron.2014.03.030.

75. McQueen J, Ryan TJ, McKay S, Marwick K, Baxter P, Carpanini SM. et al. Pro-death NMDA receptor signaling is promoted by the GluN2B C-terminus independently of Dapk1. Elife. 2017:6. Doi: 10.7554/eLife.17161.

76. Zhu J, Xu S, Li S, Yang X, Yu X, Zhang X. Up-regulation of GluN2A-containing NMDA receptor protects cultured cortical neuron cells from oxidative stress. Heliyon. 2018;4(11). Doi: 10.1016/j.heliyon.2018.e00976.

77. Wang J, Swanson RA. Superoxide and Non-ionotropic Signaling in Neuronal Excitotoxicity. Frontiers in Neuroscience. Frontiers Media S.A. 2020:(4). Doi: 10.3389/fnins.2020.00861.

78. Wu Y, Chen C, Yang Q, Jiao M, Qiu S. Endocytosis of GluN2B-containing NMDA receptor mediates NMDA-induced excitotoxicity. Mol Pain. 2017:13. Doi: 10. 1177/1744806917701921.

79. Muir KW, Lees KR, Hamilton SJC, George CF, Hobbiger SF, Lunnon MW. A Randomized, Double-Blind, Placebo-Controlled Ascending Dose Tolerance Study of 619C89 in Acute Stroke. Ann N.Y. Acad Sci. 1995;765(1):328–329. Doi: 10.1111/j.1749-6632.1995.tb16605.x.

80. Squire IB, Lees KR, Pryse-Phillips W, Kertesz A, Bamford G. Efficacy and Tolerability of Lifarizine in Acute Ischemic Stroke. A Pilot Study. Ann N Y Acad Sci. 1995;765(1):317–318. Doi: 10.1111/j.1749-6632.1995.tb16599.x.

81. Saver JL. Citicoline: Update on a promising and widely available agent for neuroprotection and neurorepair. Vol. 5, Reviews in Neurological Diseases. 2008;(5):167–177.

82. Muir KW, Lees KR. Excitatory amino acid antagonists for acute stroke. Cochrane Database Syst Rev. 2003. Doi: 10.1002/14651858.cd001244.

83. Shuaib A, Lees KR, Lyden P, Grotta J, Davalos A, Davis SM. et al. NXY-059 for the Treatment of Acute Ischemic Stroke. N Engl J Med. 2007;357(6):562–571. Doi: 10.1056/NEJMoa070240.

84. Lees KR, Muir KW, Ford I, Reid L, Mendelow AD, Sandercock PAG. et al. Magnesium for acute stroke (Intravenous Magnesium Efficacy in Stroke trial): Randomised controlled trial. Lancet. 2004;363(9407):439–445. Doi: 10.1016/S0140-6736(04)15490-1.

85. Shkirkova K, Starkman S, Sanossian N, Eckstein M, Stratton S, Pratt F. et al. Paramedic Initiation of Neuroprotective Agent Infusions. In: Stroke. Lippincott Williams and Wilkins. 2017:1901–1907. Doi: 10.1161/STROKEAHA.116.015664.

86. Saver JL, Starkman S, Eckstein M, Stratton SJ, Pratt FD, Hamilton S. et al. Prehospital Use of Magnesium Sulfate as Neuroprotection in Acute Stroke. N Engl J Med. 2015; 372(6):528–536. Doi: 10.1056/nejmoa1408827.

87. Kidwell CS, Lees KR, Muir KW, Chen C, Davis SM, De Silva DA. et al. Results of the MRI substudy of the intravenous magnesium efficacy in stroke trial. Stroke. 2009;40(5):1704– 1709. Doi: 10.1161/STROKEAHA.108.537613.

88. Hill MD, Martin RH, Mikulis D, Wong JH, Silver FL, terBrugge KG. et al. Safety and efficacy of NA-1 in patients with iatrogenic stroke after endovascular aneurysm repair (ENACT): A phase 2, randomised, double-blind, placebocontrolled trial. Lancet Neurol. 2012;11(11):942–950. Doi: 10.1016/S1474-4422(12)70225-9.

89. Zhou HH, Tang Y, Zhang XY, Luo CX, Gao LY, Wu HY. et al. Delayed Administration of Tat-HA-NR2B9c Promotes Recovery after Stroke in Rats. Stroke. 2015;46(5):1352–1358. Doi: 10.1161/STROKEAHA.115.008886.

90. Hill MD, Goyal M, Menon BK, Nogueira RG, McTaggart RA, Demchuk AM. et al. Efficacy and safety of nerinetide for the treatment of acute ischaemic stroke (ESCAPE-NA1): a multicentre, double-blind, randomised controlled trial. Lancet. 2020;395(10227):878–887. Doi: 10.1016/S0140-6736(20)30258-0.

91. Del Carmen Godino M, Romera VG, Sánchez-Tomero JA, Pacheco J, Canals S, Lerma J. et al. Amelioration of Ischemic brain damage by peritoneal dialysis. J Clin Invest [Internet]. 2013;123(10):4359–4363. Doi: 10.1172/JCI67284.

92. Brotfain E, Kutz R, Grinshpun J, Gruenbaum BF, Gruenbaum SE, Frenkel A. et al. Blood Glutamate Reducing Effect of Hemofiltration in Critically Ill Patients. Neurotox Res. 2018;33(2):300–308. Doi: 10.1007/s12640-017-9791-0.

93. Weiner HL, Selkoe DJ. Inflammation and therapeutic vaccination in CNS diseases. Nature. 2002;(420):879–884. Doi: 10.1038/nature01325.

94. Zhou R, Yazdi AS, Menu P, Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011; 469(7329):221–226. Doi: 10.1038/nature09663.

95. Wolf AJ, Reyes CN, Liang W, Becker C, Shimada K, Wheeler ML. et al. Hexokinase Is an Innate Immune Receptor for the Detection of Bacterial Peptidoglycan. 2016;166(3):624– 636. Doi: 10.1016/j.cell.2016.05.076.

96. Gao L, Dong Q, Song Z, Shen F, Shi J, Li Y. NLRP3 inflammasome: a promising target in ischemic stroke. Inflammation Research. Birkhauser Verlag AG. 2017;(66):17–24. Doi: 10.1007/s00011-016-0981-7.

97. Hou Y, Wang Y, He Q, Li L, Xie H, Zhao Y. et al. Nrf2 inhibits NLRP3 inflammasome activation through regulating Trx1/ TXNIP complex in cerebral ischemia reperfusion injury. Behav Brain Res. 2018;(336):32–39. Doi: 10.1016/j.bbr.2017.06.027.

98. Oslowski CM, Hara T, O’Sullivan-Murphy B, Kanekura K, Lu S, Hara M. et al. Thioredoxin-interacting protein mediates ER stress-induced β cell death through initiation of the inflammasome. Cell Metab. 2012;16(2):265–273. Doi: 10.1016/j.cmet.2012.07.005.

99. Terao S, Yilmaz G, Stokes KY, Russell J, Ishikawa M, Kawase T. et al. Blood cell-derived RANTES mediates cerebral microvascular dysfunction, inflammation, and tissue injury after focal ischemiareperfusion. 2008;39(9):2560–2570. Doi: 10.1161/STROKEAHA.107.513150.

100. Tuttolomondo A, Puleo MG, Velardo MC, Corpora F, Daidone M, Pinto A. Molecular Biology of Atherosclerotic Ischemic. International journal of molecular sciences. NLM (Medline). 2020:21. Doi: 10.3390/ijms21249372.

101. Fan Y, Xiong X, Zhang Y, Yan D, Jian Z, Xu B. et al. MKEY, a Peptide Inhibitor of CXCL4-CCL5 Heterodimer Formation, Protects Against Stroke in Mice. J Am Heart Assoc. 2016;5(9). Doi: 10.1161/JAHA.116.003615.

102. Asahi M, Asahi K, Jung JC, Del Zoppo GJ, Fini ME, Lo EH. Role for matrix metalloproteinase 9 after focal cerebral ischemia: Effects of gene knockout and enzyme inhibition with BB-94. J Cereb Blood Flow Metab. 2000;20(12):1681–1689. Doi: 10.1097/00004647-200012000-00007.

103. Rosenberg GA, Yang Y. Vasogenic edema due to tight junction disruption by matrix metalloproteinases in cerebral ischemia. Neurosurgical focus. Neurosurg Focus. 2007:22. Doi: 10.3171/foc.2007.22.5.5.

104. Jin WN, Shi SXY, Li Z, Li M, Wood K, Gonzales RJ. et al. Depletion of microglia exacerbates postischemic inflammation and brain injury. J Cereb Blood Flow Metab. 2017;37(6):2224–2236. Doi: 10.1177/0271678X17694185.

105. Ritzel RM, Patel AR, Grenier JM, Crapser J, Verma R, Jellison ER. et al. Functional differences between microglia and monocytes after ischemic stroke. J Neuroinflammation. 2015;12(1). Doi: 10.1186/s12974-015-0329-1.

106. Wright GJ, Cherwinski H, Foster-Cuevas M, Brooke G, Puklavec MJ, Bigler M. et al. Characterization of the CD200 Receptor Family in Mice and Humans and Their Interactions with CD200. J Immunol. 2003;171(6):3034–3046. Doi: 10.4049/jimmunol.171.6.3034.

107. Hoek RH, Ruuls SR, Murphy CA, Wright GJ, Goddard R, Zurawski SM. et al. Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science (80). 2000;290(5497):1768–1771. Doi: 10.1126/science.290.5497.1768.

108. Mitani A, Tanaka K. Functional changes of glial glutamate transporter GLT-1 during ischemia: An in vivo study in the hippocampal CA1 of normal mice and mutant mice lacking GLT-1. J Neurosci. 2003;23(18):7176–7182. Doi: 10.1523/jneurosci.23-18-07176.2003.

109. Xu L, Emery JF, Ouyang YB, Voloboueva LA, Giffard RG. Astrocyte targeted overexpression of Hsp72 or SOD2 reduces neuronal vulnerability to forebrain ischemia. Glia. 2010;58(9):1042–1049. Doi: 10.1002/glia.20985.

110. Liesz A, Zhou W, Mracskó É, Karcher S, Bauer H, Schwarting S. et al. Inhibition of lymphocyte trafficking shields the brain against deleterious neuroinflammation after stroke. Brain. 2011;134(3):704–720. Doi: 10.1093/brain/awr008.

111. Gelderblom M, Weymar A, Bernreuther C, Velden J, Arunachalam P, Steinbach K. et al. Neutralization of the IL-17 axis diminishes neutrophil invasion and protects from ischemic stroke. Blood. 2012;120(18):3793–3802. Doi: 10.1182/blood-2012-02-412726.

112. Shichita T, Sugiyama Y, Ooboshi H, Sugimori H, Nakagawa R, Takada I. et al. Pivotal role of cerebral interleukin- 17-producing T cells in the delayed phase of ischemic brain injury. Nat Med. 2009;15(8):946–950. Doi: 10.1038/nm.1999.

113. Liesz A, Suri-Payer E, Veltkamp C, Doerr H, Sommer C, Rivest S. et al. Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat Med. 2009;15(2):192–199. Doi: 10.1038/nm.1927.

114. Liesz A, Zhou W, Na SY, Hämmerling GJ, Garbi N, Karcher S. et al. Boosting regulatory T cells limits Neuroinflammation in permanent cortical stroke. J Neurosci. 2013;33(44):17350–17362. Doi: 10.1523/JNEUROSCI.4901-12.2013.

115. Sakaguchi S, Miyara M, Costantino CM, Hafler DA. FOXP3 + regulatory T cells in the human immune system. Nature Reviews Immunology. Nat Rev Immunol; 2010;(10):490– 500. Doi: 10.1038/nri2785.

116. Fu Y, Zhang N, Ren L, Yan Y, Sun N, Li YJ. et al. Impact of an immune modulator fingolimod on acute ischemic stroke. Proc Natl Acad Sci U S A. 2014;111(51):18315–18320. Doi: 10.1073/pnas.1416166111.

117. Zhu Z, Fu Y, Tian D, Sun N, Han W, Chang G. et al. Combination of the Immune Modulator Fingolimod with Alteplase in Acute Ischemic Stroke: A Pilot Trial. Circulation. 2015;132(12):1104–1112. Doi: 10.1161/CIRCULATIONAHA.115.016371.

118. Llovera G, Hofmann K, Roth S, Salas-Pérdomo A, Ferrer-Ferrer M, Perego C. et al. Results of a preclinical randomized controlled multicenter trial (pRCT): Anti-CD49d treatment for acute brain ischemia. Sci Transl Med. 2015;7(299):299ra121- 299ra121. Doi: 10.1126/scitranslmed.aaa9853.

119. Dinarello CA, van der Meer JWM. Treating inflammation by blocking interleukin-1 in humans. Seminars in Immunology. Academic Press; 2013;(25):469–484. Doi: 10.1016/j.smim.2013.10.008

120. Smith CJ, Hulme S, Vail A, Heal C, Parry-Jones AR, Scarth S. et al. SCIL-STROKE (subcutaneous interleukin-1 receptor antagonist in ischemic stroke): A randomized controlled phase 2 trial. Stroke. 2018;49(5):1210–1216. Doi: 10.1161/STROKEAHA.118.020750.

121. Diebold L, Chandel NS. Mitochondrial ROS regulation of proliferating cells. Vol. 100, Free Radical Biology and Medicine. Elsevier Inc. 2016;(100):86–93. Doi: 10.1016/j.freeradbiomed.2016.04.198.

122. Li P, Stetler RA, Leak RK, Shi Y, Li Y, Yu W. et al. Oxidative stress and DNA damage after cerebral ischemia: Potential therapeutic targets to repair the genome and improve stroke recovery. Neuropharmacology. Elsevier Ltd. 2018;(134):208– 217. Doi: 10.1016/j.neuropharm.2017.11.011.

123. Lippard AG, Tennyson S. Generation, Translocation, and Action of Nitric Oxide in Living Systems. Chem Biol. 2011;(18):1211–1220. Doi: 10.1016/j.chembiol.2011.09.009.

124. Hendgen-Cotta UB, Shiva S, Schmitz J, Becher S, Klare JP, Steinhoff H-J. et al. Nitrite reductase activity of myoglobin regulates respiration and cellular viability in myocardial ischemia-reperfusion injury. PNAS. 2008;105(29):10256–10261. Doi: 10.1073 pnas.0801336105.

125. Mikula I, Martasek P, Mutus B, Slama-Schwok A, Durocher S. Isoform-specific differences in the nitrite reductase activity of nitric oxide synthases under hypoxia. Biochem J. 2008;(418):673–682. Doi: 10.1042/BJ20080987.

126. Samouilov A, Zweier JL, Kuppusamy P. Evaluation of the Magnitude and Rate of Nitric Oxide Production from Nitrite in Biological Systems. Arch Biochem Biophys. 1998;357(1):1–7.

127. Luiking YC, Deutz NEP, Mariëlle PK, Engelen J. Regulation of nitric oxide production in health and disease. Curr Opin Clin Nutr Metab Care. 2010;13(1):97–104. Doi: 10.1097/MCO.0b013e328332f99d.

128. Bonnefont-Rousselot D. Resveratrol and cardiovascular diseases. Nutrients. MDPI AG; 2016:(8). Doi: 10.3390/nu8050250.

129. Kangisser L, Tan E, Bellomo R, Deane AM, Plummer MP. Neuroprotective properties of vitamin C: A Scoping Review of pre-clinical and clinical studies. J Neurotrauma. 2021. Doi: 10.1089/neu.2020.7443.

130. Rodrigo R, Fernandez-Gajardo R, Gutierrez R, Matamala J, Carrasco R, Miranda-Merchak A. et al. Oxidative Stress and Pathophysiology of Ischemic Stroke: Novel Therapeutic Opportunities. CNS Neurol Disord – Drug Targets. 2013;12(5):698–714. Doi: 10.2174/1871527311312050015.

131. Schürks M, Glynn RJ, Rist PM, Tzourio C, Kurth T. Effects of vitamin E on stroke subtypes: Meta-analysis of randomised controlled trials. BMJ. 2010;341(7781):1033. Doi: 10.1136/bmj.c5702.

132. Le NK, Kesayan T, Chang JY, Rose DZ. Cryptogenic Intracranial Hemorrhagic Strokes Associated with Hypervitaminosis E and Acutely Elevated α-Tocopherol Levels. J Stroke Cerebrovasc Dis. 2020;29(5). Doi: 10.1016/j.jstrokecerebrovasdis.2020.104747.

133. Boltze J, Aronowski JA, Badaut J, Buckwalter MS, Caleo M, Chopp M. et al. New Mechanistic Insights, Novel Treatment Paradigms, and Clinical Progress in Cerebrovascular Diseases. Front Aging Neurosci. 2021:13. Doi: 10.3389/fnagi.2021.623751.

134. Sun MS, Jin H, Sun X, Huang S, Zhang FL, Guo ZN. et al. Free Radical Damage in Ischemia-Reperfusion Injury: An Obstacle in Acute Ischemic Stroke after Revascularization Therapy. Oxidative Medicine and Cellular Longevity. Hindawi Limited. 2018. Doi: 10.1155/2018/3804979.

135. Choi JH, Pile-Spellman J. Reperfusion Changes After Stroke and Practical Approaches for Neuroprotection. Neuroimaging Clinics of North America. W.B. Saunders. 2018;(28):663–682. Doi: 10.1016/j.nic.2018.06.008.

136. Pagliaro P, Femminò S, Popara J, Penna C. Mitochondria in cardiac postconditioning. Frontiers in Physiology. Frontiers Media S.A. 2018:(9) Doi: 10.3389/fphys.2018.00287.

137. Piccardi B, Arba F, Nesi M, Palumbo V, Nencini P, Giusti B. et al. Reperfusion Injury after ischemic Stroke Study (RISKS): Single-centre (Florence, Italy), prospective observational protocol study. BMJ Open. 2018;8(5). Doi: 10.1136/bmjopen-2017-021183.

138. Khatri R, McKinney AM, Swenson B, Janardhan V. Blood-brain barrier, reperfusion injury, and hemorrhagic transformation in acute ischemic stroke. Neurology. Lippincott Williams and Wilkins. 2012:(79). Doi: 10.1212/WNL.0b013e3182697e70.

139. Stoll G, Nieswandt B. Thrombo-inflammation in acute ischaemic stroke — implications for treatment. Nature Reviews Neurology. Nature Publishing Group. 2019;(15):473–481. Doi: 10.1038/s41582-019-0221-1.

140. Jin R, Yang G, Li G. Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J Leukoc Biol. 2010;87(5):779–789. Doi: 10.1189/jlb.1109766.

141. Zhao H, Ren C, Chen X, Shen J. From Rapid to Delayed and Remote Postconditioning: The Evolving Concept of Ischemic Postconditioning in Brain Ischemia. Curr Drug Targets. 2012;13(2):173–187. Doi: 10.2174/138945012799201621.

142. Li CY, Ma W, Liu KP, Yang JW, Wang X Bin, Wu Z. et al. Advances in intervention methods and brain protection mechanisms of in situ and remote ischemic postconditioning. Metabolic Brain Disease. Springer. 2021;(36):53–65. Doi: 10.1007/s11011-020-00562-x.

143. Li YJ, Liang KK, Zhang L, Pan R, Hu YM, Zhao JH. Remote Ischemic Post-Conditioning may Improve Post-Stroke Cognitive Impairment: A Pilot Single Center Randomized Controlled Trial. J Stroke Cerebrovasc Dis. 2020;29(11). Doi: 10.1016/j.jstrokecerebrovasdis.2020.105217.

144. Basalay M V., Wiart M, Chauveau F, Dumot C, Leon C, Amaz C. et al. Neuroprotection by remote ischemic conditioning in the setting of acute ischemic stroke: a preclinical two-centre study. Sci Rep. 2020;10(1). Doi: 10.1038/s41598-020-74046-4.

145. An JQ, Cheng YW, Guo YC, Wei M, Gong MJ, Tang YL. et al. Safety and efficacy of remote ischemic postconditioning after thrombolysis in patients with stroke. Neurology. 2020;95(24):E3355–E3363. Doi: 10.1212/WNL.0000000000010884.


Для цитирования:


Иванов Е.В., Гаврилова С.А., Кошелев В.Б. Механизмы развития острого ишемического повреждения головного мозга: клинические и экспериментальные возможности его коррекции. Регионарное кровообращение и микроциркуляция. 2021;20(2):5-19. https://doi.org/10.24884/1682-6655-2021-20-2-5-19

For citation:


Ivanov E.V., Gavrilova S.A., Koshelev V.B. Brain acute ischemia mechanisms: implications to experimental and clinical treatment. Regional blood circulation and microcirculation. 2021;20(2):5-19. (In Russ.) https://doi.org/10.24884/1682-6655-2021-20-2-5-19

Просмотров: 183


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1682-6655 (Print)
ISSN 2712-9756 (Online)