Content of nitric oxide and copper in the olfactory bulbs of the rats brain after modeling of cerebral stroke and intranasal administration of mesenchymal stem cells
https://doi.org/10.24884/1682-6655-2021-20-2-77-86
Abstract
Introduction. With a decrease in the oxygen content in the inhaled air, violations of the cerebral blood flow, brain ischemia occurs, which can end in an ischemic stroke.
Aim. Comparative analysis of the intensity of nitric oxide (NO) production and the copper content in the olfactory bulb tissues of the brain of male Wistar rats after modeling an ischemic stroke.
Materials and methods. Modeling of ischemic stroke by ligation at the bifurcation level of both common carotid arteries and measuring the content of NO and copper by EPR spectroscopy.
Results. The relative changes in the number of NO-containing complexes and the copper content were estimated from the integrated signal intensity of the complexes (DETC)2-Fe2+-NO and (DETC)2- Cu. A significant decrease by 47 % after 1 and 57 % after 2 days, respectively, in the NO content in the olfactory bulb of the rat brain was found after the ischemia modeling. The level of NO production in rats that underwent ischemia simulation with simultaneous intranasal administration of mesenchymal stem cells (MSCs) was also reduced by 51 % after 1 and 70 % after 2 days, respectively, after ischemia modeling. There was no significant difference in the NO content in the rats after ischemia modeling with simultaneous intranasal administration of MSCs compared to the ischemic rats. The copper content, which corresponds to the level of superoxide dismutase 1 and 3, in the rat’s olfactory bulb tended to increase after ischemia modeling and it persisted for two days of observation (an increase of 50 % in both cases). Intranasal administration of MSCs was accompanied by a significant increase in the Cu content (by 89 %) 1 day after the ischemia modeling, and 2 days later – by a decrease in its content by 36 % (compared to the control). In the control animals that were not subjected to surgical operations, no changes in the content of NO or copper were observed.
Conclusion. The experiments showed a 2-fold decrease in the NO content in the olfactory bulb of the rat brain 1 and 2 days after the ischemia modeling, and demonstrated that the intranasal administration of MSCs did not affect the intensity of NO production on the 1st and 2nd days after the brain ischemia modeling, but was accompanied by an increase in the antioxidant protection of the nervous tissue one day after ischemia.
Keywords
About the Authors
V. V. AndrianovRussian Federation
Andrianov Vyatcheslav V. – PhD, Senior scientific researcher; Senior Scientific Researcher
10/7, Sibirsky tract, Kazan, 420029
V. A. Kulchitsky
Belarus
Kulchitsky Vladimir A. – MD, Dr. of Sci., Professor, Scientific Director
8, Akademicheskaya str., Minsk
G. G. Yafarova
Russian Federation
Yafarova Guzel G. – PhD, Senior scientific researcher; Assistant Professor
10/7, Sibirsky tract, Kazan, 420029
18, Kremlyovskaya str., Kazan
Yu. P. Tokalchik
Belarus
Tokalchik Yulya P. – PhD, Senior Researcher, Neurophysiology Laboratory
8, Akademicheskaya str., Minsk
A. S. Zamaro
Belarus
Zamaro Alexandra S. – Researcher
8, Akademicheskaya str., Minsk
L. V. Bazan
Russian Federation
Bazan Liya B. – PhD, Scientific researcher
10/7, Sibirsky tract, Kazan, 420029
T. Kh. Bogodvid
Russian Federation
Bogodvid Tatiana Kh. – PhD, Dr. of Sci., Senior scientific researcher; Associative Professor
18, Kremlyovskaya str., Kazan
35, Derevnya Universiadi, Kazan, 420010
V. S. Iyudin
Russian Federation
Iyudin Vasily S. – Scientific researcher
10/7, Sibirsky tract, Kazan, 420029
S. G. Pashkevich
Belarus
Pashkevich Svetlana G. – PhD, Head of the Laboratory of Neurophysiology
8, Akademicheskaya str., Minsk
M. O. Dosina
Belarus
Dosina Margarita O. – PhD, Senior Researcher
8, Akademicheskaya str., Minsk
Kh. L. Gainutdinov
Russian Federation
Gainutdinov Khalil L. – PhD, Dr. of Sci., Professor, Kazan federal University, leader scientist
10/7, Sibirsky tract, Kazan, 420029
References
1. Кошелев В. Б. Механизмы регуляции артериального давления // Избранные лекции по современной физиологии. – Казань: ГОЭТАР, 2010. – С. 178–194. [Koshelev V.B. Mechanisms of blood pressure regulation. The digest Selected Lectures on Contemporary Physiology. Kazan, 2010:78–194. (In Russ.)].
2. Kumar H, Choi DK. Hypoxia inducible factor pathway and physiological adaptation: a cell survival pathway?. Mediators of Inflammation. 2015. Doi: 10.1155/2015/584758.
3. Manukhina EB, Malyshev IY, Smirin BV, Mashina SY, Saltykova VA, Vanin AF. Production and storage of nitric oxide in adaptation to hypoxia. Nitric Oxide. 1999;3(5):393–401. Doi: 10.1006/niox.1999.0244.
4. Воронина Т. А. Роль гипоксии в развитии инсульта и судорожных состояний. Антигипоксанты // Обзоры по клин. фармакологии и лекарств. терапии. – 2016. – Т. 14, № 1. – С. 63–70. [Voronina TA. The role of hypoxia in the development of stroke and convulsive conditions. Antihypoxants. Reviews on Clinical Pharmacology and Drug Therapy. 2016;14(1):63–70. (In Russ.)]. Doi: 10.17816/RCF14163-70.
5. Donnan GA, Fisher M, Macieod M, Davis SM. Stroke. Lancet. 2008;(371):1612–1623. Doi: 10.1016/S0140-6736(08)60694-7.
6. Ванин А. Ф. Динитрозильные комплексы железа и S-нитрозотиолы – две возможные формы стабилизации и транспорта оксида азота в биосистемах // Биохимия. – 1998. – Т. 63, № 7. – С. 924–938. [Vanin AF. Dinitrosyl complexes of iron and S-nitrosothiols - two possible forms of stabilization and transport of nitric oxide in biosystems. Biochemistry. 1998;63(7):924–938. (In Russ.)].
7. Vanin AF. Dinitrosyl iron complexes with thiol-containing ligands as a «working form» of endogenous nitric oxide. Nitric Oxide. 2016;(54):15–29. Doi: 10.1016/j.niox.2016.01.006.
8. Boehning D, Snyder SH. Novel neural modulators. Annu. Rev. Neurosci. 2003;(26):105–131.
9. Steinert JR, Chernova T, Forsythe ID. Nitric oxide signaling in brain function, dysfunction, and dementia. Neuroscientist. 2010;16(4):435–452. Doi: 10.1177/1073858410366481.
10. Lakomkin VL, Vanin AF, Timoshin AA, Kapelko VI, Chazov EI. Long-lasting hypotensive action of stable preparations of dinitrosyl-iron complexes with thiolcontaining ligands in conscious normotensive and hypertensive rats. Nitric Oxide: Biology and Chemistry. 2007;16(4):413–418. Doi: 10.1016/j.niox.2007.03.002.
11. Реутов В. П., Охотин В. Е., Шуклин А. В. и др. Оксид азота и цикл в миокарде: молекулярные, биохимические и физиологические аспекты // Успехи физиол. наук. – 2007. – Т. 38, № 4. – С. 39–58. [Reutov VP, Okhotin VE, Shuklin AV, Sorokina EG, Kositsyn NS, Gurin VN. Nitric oxide and the cycle in the myocardium: molecular, biochemical and physiological aspects. Advances in physiological sciences. 2007;38(4):39–58. (In Russ.)].
12. Андрианов В. В., Ситдиков Ф. Г., Гайнутдинов Х. Л. и др. Изменение содержания оксида азота в сердце интактных и десимпатизированных крыс в онтогенезе // Онтогенез. – 2008. – T. 39, № 6. – C. 437–442. [Andrianov VV, Sitdikov FG, Gainutdinov KhL, Yurtaeva SV, Obychny AA, Yafarova GG, Muranova LN, Karimov FK, Chiglintsev VM, Iyudin VS. Changes in nitric oxide content in the heart of intact and sympathetic rats during ontogenesis. Ontogenesis. 2008; 39(6):437–442. (In Russ.)].
13. Манухина Е. Б., Каленчук В. У., Гаврилова С. А. и др. Органоспецифичность депонирования оксида азота в стенках кровеносных сосудов при адаптации к гипоксии // Рос. физиол. журн. им. И. М. Сеченова. – 2008. – Т. 94. – № 2. – С. 198–205. [Manukhina EB, Kalenchuk VU, Gavrilova SA, Goryacheva AV, Malyshev IYu, Koshelev VB. Organ specificity of nitric oxide deposition in the walls of blood vessels during adaptation to hypoxia. Russian Physiological Journal. 2008;94(2):198–205. (In Russ.)].
14. Chen ZQ, Mou RT, Feng DX, Wang Z, Chen G. The role of nitric oxide in stroke. Med Gas Res. 2017;7(3):194–203.
15. Ситдикова Г. Ф., Зефиров А. Л. Газообразные посредники в нервной системе // Рос. физиол. журн. им. И. М. Сеченова. – 2006. –T. 92. – C. 872–882. [Sitdikova GF, Zefirov AL. Gaseous mediators in the nervous system. Russian Physiological Journal. 2006;(92):872–882. (In Russ.)].
16. Heinrich TA, da Silva RS, Miranda KM, Switzer CH, Wink DA, Fukuto JM. Biological nitric oxide signalling: chemistry and terminology. British Journal of Pharmacology. 2013;(169):1417–1429. Doi:10.1111/bph.12217.
17. Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 2007;(87):315–427.
18. Calabrese V, Cornelius C, Rizzarelli E, Owen JB, Dinkova-Kostova AT, Butterfield DA. Nitric oxide in cell survival: a janus molecule. Antioxidants and Redox Signaling. 2009;(11):2717–2739.
19. Салыкина М. А., Сорокина Е. Г., Красильникова И. А. и др. Влияние селективных ингибиторов нейрональной и индуцибельной NO-синтаз на содержание АТФ и выживаемость культивируемых нейронов мозжечка крысы при гиперстимуляции глутаматных рецепторов // Бюлл. эксперимент. биологии и мед. – 2013. – Т. 155, № 1. – C. 47– 50. [Salykina MA, Sorokina EG, Krasilnikova IA, Reutov VP, Pinelis VG. The effect of selective inhibitors of neuronal and inducible NO synthases on the ATP content and the survival of cultured neurons in the rat cerebellum during hyperstimulation of glutamate receptors. Bulletin of Experimental Biology and Medicine. 2013;155(1):47–50. (In Russ.)].
20. Samdani AF, Dawson VL. Nitric oxide synthase in models of focal ischemia. Stroke. 1997; (28):1283–1288.
21. Iadecola C, Zhang F, Casey R, Nagayama M, Ross ME. Delayed reduction of ischemic brain injury and neurological deficits in mice lacking the inducible nitric oxide synthase gene. J. Neurosci. 1997;17(23):9157–9164.
22. Tominaga T, Sato S, Ohnishi T, Ohnishi ST. Electron paramagnetic resonance (EPR) detection of nitric oxide produced during forebrain ischemia of the rat. J. Cerebral Blood Flow and Metaholism. 1994;(14):715–722.
23. Dawson DA, Kusumoto K, Graham DI, McCulloch J, Macrae IM. Inhibition of nitric oxide synthesis does not reduce infarct volume in a rat model of focal cerebral ischaemia. Neuroscience Letters. 1992;142(2):151–154.
24. Yamamoto S, Golanov EV, Berger SB, Reis DJ. Inhibition of Nitric Oxide Synthesis Increases Focal Ischemic Infarction in Rat. Journal of Cerebral Blood Flow and Metabolism. 1992;(12):717–726.
25. Willmot M, Gray L, Gibson C, Murphy S, Bath PM. A systematic review of nitric oxide donors and L-arginine in experimental stroke; effects on infarct size and cerebral blood flow. Nitric Oxide. 2005;(12):141–149.
26. Jung KH, Chu K, Ko SY, Lee ST, Sinn DI, Park DK, Kim JM, Song EC, Kim M, Roh JK. Early intravenous infusion of sodium nitrite protects brain against in vivo ischemiareperfusion injury. Stroke 2006;(37):2744–50.
27. Самойленкова Н. С., Гаврилова С. А., Кошелев В. Б. Защитный эффект гипоксического и ишемического прекондиционирования при локальной ишемии мозга крыс // Доклады академии наук. – 2007. – Т. 414, № 2. – C. 283–285. [Samoilenkova NS, Gavrilova SA, Koshelev VB. Protective effect of hypoxic and ischemic preconditioning in local cerebral ischemia in rats. Academy of Sciences reports. 2007; 414(2):283–285. (In Russ.)].
28. Shmonin AA, Baisa AE, Melnikova EV, Vavilov VN, Vlasov TD. Protective effects of early ischemic preconditioning in focal cerebral ischemia in rats: the role of collateral blood circulation. Neuroscience and Behavioral Physiology. 2012;42(6):643–650. Doi: 10.1007/s11055-012-9615-x.
29. Маслов Л. Н., Халиулин И. Г., Подоксенов Ю. К. Нейропротекторный и кардиопротекторный эффекты гипотермического прекондиционирования // Патолог. физиология и эксперимент. терапия. – 2012. – T. 1. C. 67– 72. [Maslov LN, Khaliulin IG, Podoksenov YuK. Neuroprotective and cardioprotective effects of hypothermic preconditioning. Pathological physiology and experimental therapy. 2012;(1):67–72. (In Russ.)].
30. Ding ZM, Wu B, Zhang WQ, Lu XJ, Lin YC, Geng YJ, Miao YF. Neuroprotective effects of ischemic preconditioning and postconditioning on global brain ischemia in rats through the same effect on inhibition of apoptosis. Int. J. Mol. Sci. 2012; 13(5):6089–6101. Doi: 10.3390/ijms13056089.
31. Щербак Н. С., Юкина Г. Ю., Сухорукова Е. Г., Томсон В. В. Влияние ишемического посткондиционирования на реакцию микроглии неркортекса при глобальной ишемии головного мозга у крыс // Регионарное кровообращение и микроциркуляция. – 2020. – Т. 19, № 2. – С. 59–66. [Shcherbak NS, Yukina GYu, Sukhorukova EG, Thomson VV. Influence of ischemic postconditioning on the reaction of microglia of the nercortex in global cerebral ischemia in rats. Regional blood circulation and microcirculation. 2020; 19(2):59–66. (In Russ.)]. Doi: 10.24884/1682-6655-2020-19-2-59-66.
32. Дерягин О. Г., Гаврилова С. А., Буравков С. В. и др. Роль АТФ-чувствительных калиевых каналов и оксида азота в защитном эффекте прекондиционирования мозга // Журн. неврологии и психиатрии им. С. С. Корсакова. – 2016. – T. 116, № 8. – C. 17–23. [Deryagin OG, Gavrilova SA, Buravkov SV, Andrianov VV, Yafarova GG, Gainutdinov HL, Koshelev VB. The role of ATP-sensitive potassium channels and nitric oxide in the protective effect of brain preconditioning. Journal of Neurology and Psychiatry. 2016;116(8):17–23. (In Russ.)]. Doi: 10.17116/jnevro20161168217-23.
33. Kong Y, Xu R, Darabi MA, Zhong W, Luo G, Xing MM, Wu J. Fast and safe fabrication of a free-standing chitosan/ alginate nanomembrane to promote stem cell delivery and wound healing. Int. J. Nanomedicine. 2016;(11):2543–2555. Doi: 10.2147/IJN.S102861.
34. Harris L, Zalucki O, Oishi S, Burne TH, Jhaveri DJ, Piper M. A morphology independent approach for identifying dividing adult neural stem cells in the mouse hippocampus. Dev. Dyn. 2018;247(1):194–200. Doi: 10.1002/dvdy.24545.
35. Eggenhofer E, Luk F, Dahlke MH, Hoogduijn MJ. The life and fate of mesenchymal stem cells. Front. Immunol. 2014; (5):148. Doi: 10.3389/fimmu.2014.00148.
36. Harrell CR, Fellabaum C, Jovicic N, Djonov V, Arsenijevic N, Volarevic V. Molecular mechanisms responsible for therapeutic potential of mesenchymal stem cell-derived secretome. Cells. 2019;8(5):467. Doi:10.3390/cells8050467.
37. Kulchitsky V, Zamaro A, Shanko Y, Koulchitsky S. Positive and negative aspects of cell technologies in cerebral diseases. J. Neurol. Stroke. 2018;8(2):87–88. Doi: 10.15406/jnsk.2018.08.00286.
38. Bogodvid T, Pashkevich S, Dosina M, Zamaro A, Takalchik Y, Yafarova G, Andrianov V, Denisov A, Loiko D, Gainutdinov K, Kulchitsky V. Effect of intranasal administration of mesenchymal stem cells on the approximate motor activity of rats after simulation of ischemic stroke. Eur. J. Clin. Investig. 2019;(49):161. Doi: 10.1111/eci.13109.
39. Shanko Y, Zamaro A, Takalchik SY, Koulchitsky S, Pashkevich S, Panahova E, Navitskaya V, Dosina M, Denisov A, Bushuk S, Kulchitsky V. Mechanisms of Neural Network Structures Recovery in Brain Trauma. Biomed. J. Sci. Tech. Res. 2018;7(5). Doi: 10.26717/BJSTR.2018.07.001567.
40. Vanin AF, Huisman A, Van Faassen EE. Iron Dithiocarbamate as Spin Trap for Nitric Oxide Detection: Pitfalls and Successes. Methods in Enzymology. 2003;(359):27–42.
41. Микоян ВД, Кубрина ЛН, Ванин АФ. Оксид азота образуется через L-аргинин зависимый путь в мозге мышей in vivo // Биофизика. – 1994. – Т. 39. – С. 915–918. [Mikoyan VD, Kubrina LN, Vanin AF. Nitric oxide is formed via an L-arginine dependent pathway in the brain of mice in vivo. Biophysics. 1994;(39):915–918. (In Russ.)].
42. Ismailova AI, Gnezdilov OI, Muranova LN, Obynochny AA, Andrianov VV, Gainutdinov KhL, Nasyrova AG, Nigmatullina RR, Rahmatullina FF, Zefirov AL. ESR Study of the Nitric Oxide Production in Tissues of Animals under the External Influence on the Functioning of the Cardiovascular and Nervous Sistems. Appl. Magn. Res. 2005;(28):421–430.
43. Gainutdinov KhL, Gavrilova SA, Iyudin VS, Golubeva AV, Davydova MP, Jafarova GG, Andrianov VV, Koshelev VB. EPR study of the intensity of the nitric oxide production in rat brain after ischemic stroke. Applied Magnetic Resonance. 2011;40(3):267–278.
44. van Faassen EE, Koeners MP, Joles JA, Vanin AF. Detection of basal NO production in rat tissues using irondithiocarbamate complexes. Nitric Oxide. 2008;(8):279–286.
45. Гайнутдинов Х. Л., Андрианов В. В., Июдин В. С. и др. Исследование методом ЭПР спектроскопии интенсивности продукции оксида азота в организме крыс при гипокинезии // Биофизика. – 2013. – Т. 58, № 2. – P 276– 280. [Gainutdinov HL, Andrianov VV, Iudin VS, Yurtaeva SV, Yafarova GG, Faizullina RI, Sitdikov FG. Investigation by the method of EPR spectroscopy of the intensity of production of nitric oxide in the body of rats with hypokinesia. Biophysics. 2013;58(2):276–280. (In Russ.)].
46. Andrianov VV, Yafarova GG, Pashkevich SG, Tokalchik YP, Dosina MO, Zamaro AS, Bogodvid TKh, Iyudin VS, Bazan LV, Denisov AA, Kulchitsky VA, Gainutdinov KhL. Changes of the nitric oxide and copper content in the olfactory bulbs of rats brain after modeling of brain stroke and intranasal administration of mesenchymal stem cells. Appl. Magn. Res. 2020;51(4):375–387.
47. Godinez-Rubi M, Rojas-Mayorquin AE, Ortuno-Sahagun D. Nitric oxide donorsas neuroprotective agents after an ischemic stroke-related inflammatory reaction. Oxidative Medicine and Cellular Longevity. 2013;(297357):1–16. Doi: 10.1155/2013/297357.
48. Lukomska B, Stanaszek L, Zuba-Surma E, Legosz P, Sarzynska S, Drela K, Challenges and Controversies in Human Mesenchymal Stem Cell Therapy. Stem Cells Int. 2019: 9628536. Doi: 10.1155/2019/9628536.
49. Deryagin OG, Gavrilova SA, Gainutdinov KhL, Golubeva AV, Andrianov VV, Yafarova GG, Buravkov SV, Koshelev VB. Molecular bases of brain preconditioning. Frontiers in Neuroscience. 2017;11(427):1–12. Doi: 10.3389/fnins.2017.00427.
50. Ansari M.H.K., Karimi P., Shakib N., Beyrami S.M. The neuroprotective effect of sodium nitrite on ischemic strokeinduced mitochondrial dysfunction via down regulation of intrinsic apoptosis pathway. Crescent J. Medic. Biol. Sci. 2018; 5(1):50–56.
51. Гайнутдинов Х. Л., Андрианов В. В., Яфарова Г. Г. и др. Изменение содержания оксида азота и меди в печени и гиппокампе крыс после моделирования ишемии головного мозга // Журн. техн. физики. – 2020. – Т. 90, № 9. – С. 1481–1486. [Gainutdinov KhL, Andrianov VV, Yafarova GG, Bazan LV, Bogodvid TKh, Pashkevich SG, Dosina MO, Zamaro AS, Denisov AA, Kulchitsky VA. The change in the content of nitric oxide and copper in the liver and hippocampus of rats after modeling of brain ischemia. Technical Physics, 2020;65(9):1421–1426. (In Russ.)].
52. Terpolilli NA, Moskowitz MA, Plesnila N. Nitric oxide: considerations for the treatment of ischemic stroke. J. Cereb. Blood Flow Metab. 2012;32(7):1332–1346. Doi: 10.1038/jcbfm.2012.12.
53. Calabrese V, Mancuso C, Calvani M, Rizzarelli E, Butterfield DA, Stella AMG. Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nature Reviews Neuroscience. 2007;(8):767–775. Doi: 10.1038/nrn2214.
54. Bolanos JP, Almeida A. Roles of nitric oxide in brain hypoxia-ischemia. Biochimica et Biophysica Acta (BBA). 1999;1411(2–3):415–436.
55. Reutov VP, Samosudova NV, Sorokina EG. A model of glutamate neurotoxicity and mechanisms of the development of the typical pathological process. Biophysics. 2019;64(2): 233–250.
56. Yurtaeva SV, Efimov VN, Yafarova GG, Eremeev AA, Iyudin VS, Rodionov AA, Gainutdinov KhL, Yatsyk IV. EPR Detection of Iron Storage in Rat Tissues After Simulated Microgravity Model. Appl. Magn. Reson. 2016;47(6): 555–565.
57. Яфарова Г. Г., Андрианов В. В., Пашкевич С. Г. и др. Продукция оксида азота при моделировании ишемии головного мозга у крыс: роль NO-синтаз // Рос. нейрохирург. журн. им. проф. А. Л. Поленова. – 2019. – Т. 10. – С. 128. [Yafarova GG, Andrianov VV, Pashkevich SG. i dr. Produkciya oksida azota pri modelirovanii ishemii golovnogo mozga u krys: rol’ NO-sintaz. Ros. nejrohirurg. zhurn. im. prof. A. L. Polenova. 2019;10:128. (In Russ.)].
58. Gertz K, Endres M. eNOS and stroke: prevention, treatment and recovery. Future Neurol. 2008;3(5):537–550.
59. Eliasson MJL, Huang Z, Ferrante RJ, Sasamata M, Molliver ME, Snyder SH, Moskowitz MA. Neuronal nitric oxide synthase activation and peroxynitrite formation in ischemic stroke linked to neural damage. J. Neurosci. 1999; 19(14):5910–5918.
60. Nimiritsky PP, Eremichev RYu, Alexandrushkina NA, Efimenko AYu, Tkachuk VA, Makarevich PI. Unveiling mesenchymal stromal cells’ organizing function in regeneration. Int. J. Mol. Sci. 2019;20(4):823. Doi: 10.3390/ijms20040823.
61. Kim N, Cho SG. Clinical applications of mesenchymal stem cells. Korean J. Intern. Med. 2013;(28):387–402. Doi: 10.3904/kjim.2013.28.4.387.
62. Stukach Y, Gainutdinov Kh, Dosina M, Pashkevich S, Andrianov V, Denisov A, Bogodvid T, Yafarova G, Bushuk S, Kuznetsova T, Kulchitsky V. Migration of neural stem cells in hippocampal slices in hypoxia modeling. J. Stem Cells and Regenerative Therapy. 2016;1(1):1–8.
63. Zheng Z, Zhang L, Qu Y, Xiao G, Li S, Bao S, Lu QR, Mu D. Mesenchymal Stem Cells Protect Against Hypoxia-Ischemia Brain Damage by Enhancing Autophagy Through Brain Derived Neurotrophic Factor/Mammalin Target of Rapamycin Signaling Pathway. Stem Cells 2018;36(7):1109–1121.
64. Andrianov VV, Pashkevich SG, Yafarova GG, Denisov AA, Iyudin VS, Bogodvid TKh, Dosina MO, Kulchitsky VA, Gainutdinov KhL. Changes of nitric oxide content in the rat hippocampus, heart and liver in acute phase of ischemia. Appl. Magn. Reson. 2016;47(9):965–976.
Review
For citations:
Andrianov V.V., Kulchitsky V.A., Yafarova G.G., Tokalchik Yu.P., Zamaro A.S., Bazan L.V., Bogodvid T.Kh., Iyudin V.S., Pashkevich S.G., Dosina M.O., Gainutdinov Kh.L. Content of nitric oxide and copper in the olfactory bulbs of the rats brain after modeling of cerebral stroke and intranasal administration of mesenchymal stem cells. Regional blood circulation and microcirculation. 2021;20(2):77-86. (In Russ.) https://doi.org/10.24884/1682-6655-2021-20-2-77-86