The role of reactive oxygen species in the infarct-limiting effect of hypoxic preconditioning
https://doi.org/10.24884/1682-6655-2021-20-2-87-91
Abstract
Introduction. Increased resistance of the heart to ischemia/reperfusion (I/R) is an urgent aim of physiology, pharmacology, and cardiac surgery, since I/R injury of the heart is often the cause of cardiogenic shock and subsequent death of patients in the postoperative period.
Materials and methods. The study was carried out in male rats which were subjected to coronary artery occlusion (45 min) and reperfusion (2 h). Before coronary occlusion, early hypoxic preconditioning (HP) was modeled. The rats were subjected to six sessions of hypoxia (8 % O2, 10 min) and reoxygenation (21 % O2, 10 min) 30 min before coronary artery occlusion. The rats were injected with the following drugs: 1,3-dimethylthiourea (DMTM), 2-mercaptopropionyl glycine (2-MPG), deferoxamine.
Results. It was found that HP contributes to infarct size reduction by 30 %. Preliminary administration of DMTM, 2-MPG, deferoxamine eliminated the infarct-reducing effect of HP.
Conclisuon. The obtained data indicate that reactive oxygen species are involved in the cardioprotective effect of HP.
About the Authors
A. S. SementsovRussian Federation
Sementsov Andrey S. – Researcher, Laboratory of Experimental Cardiology; Assistant, Department of Physiology
111a, Kievskaya str., Tomsk, 634012
36, Lenin pr., Tomsk, 634050
N. V. Naryzhnaya
Russian Federation
Naryzhnaya Natalia V. – MD, DSc, Principal Investigator, Laboratory of Experimental Cardiology
111a, Kievskaya str., Tomsk, 634012
M. A. Sirotina
Russian Federation
Sirotina Maria A. – laboratory assistant, Laboratory of Experimental Cardiology
111a, Kievskaya str., Tomsk, 634012
L. N. Maslov
Russian Federation
Maslov Leonid N. – MD, DSc, Professor, Head of the Laboratory of Experimental Cardiology
111a, Kievskaya str., Tomsk, 634012
References
1. Alam SR, Stirrat C, Spath N, Zamvar V, Pessotto R, Dweck MR, Moore C, Semple S, El-Medany A, Manoharan D, Mills NL, Shah A, Mirsadraee S, Newby DE, Henriksen PA. Myocardial inflammation, injury and infarction during onpump coronary artery bypass graft surgery. J Cardiothorac Surg. 2017;12(1):115. Doi: 10.1186/s13019-017-0681-6.
2. Koppen E, Madsen E, Greiff G, Stenseth R, Pleym H, Wiseth R, Wahba A, Videm V. Perioperative factors associated with changes in troponin T during coronary artery bypass grafting. J Cardiothorac Vasc Anesth. 2019;33(12):3309– 3319. Doi: 10.1053/j.jvca.2019.06.029.
3. Maslov LN, Lishmanov YB, Krylatov AV, Sementsov AS, Portnichenko AG, Podoksenov YK, Khaliulin IG. Comparative analysis of early and delayed cardioprotective and antiarrhythmic efficacy of hypoxic preconditioning. Bull Exp Biol Med. 2014;156(6):746-9. Doi: 10.1007/s10517-014-2439-7.
4. Krylatov AV, Maslov LN, Voronkov NS, Boshchenko AA, Popov SV, Gomez L, Wang H, Jaggi AS, Downey JM. Reactive oxygen species as intracellular signaling molecules in the cardiovascular system. Curr. Cardiol. Rev. 2018;14(4):290–300. Doi: 10.2174/1573403X14666180702152436.
5. Garlid AO, Jaburek M, Jacobs JP, Garlid KD. Mitochondrial reactive oxygen species: which ROS signals cardioprotection?. Am J Physiol Heart Circ Physiol. 2013;305(7):H960– 968. Doi: 10.1152/ajpheart.00858.2012.
6. Cadenas S. ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection. Free Radic Biol Med. 2018;(117):76–89. Doi: 10.1016/j.freeradbiomed.2018.01.024.
7. Galagudza MM, Sonin DL, Vlasov TD, Kurapeev DI, Shlyakhto EV. Remote vs. local ischaemic preconditioning in the rat heart: infarct limitation, suppression of ischaemic arrhythmia and the role of reactive oxygen species. Int J Exp Pathol. 2016;97(1):66–74. Doi: 10.1111/iep.12170.
8. Maslov LN, Naryzhnaya NV, Tsibulnikov SYu, Kolar F, Zhang Y, Wang H, Gusakova AM, Lishmanov YuB. Role of endogenous opioid peptides in the infarct size-limiting effect of adaptation to chronic continuous hypoxia. Life Sci. 2013; 93(9–11):373–379. Doi: 10.1016/j.lfs.2013.07.018
9. Tsutsumi YM, Yokoyama T, Horikawa Y, Roth DM, Patel HH. Reactive oxygen species trigger ischemic and pharmacological postconditioning: in vivo and in vitro characterization. Life Sci. 2007;81(15):1223–1227. Doi: 10.1016/j.lfs.2007.08.031.
10. Puisieux F, Deplanque D, Bulckaen H, Maboudou P, Gele P, Lhermitte M, Lebuffe G, Bordet R. Brain ischemic preconditioning is abolished by antioxidant drugs but does not up-regulate superoxide dismutase and glutathion peroxidase. Brain Res. 2004;1027(1–2):30–37. Doi: 10.1016/j.brainres.2004.08.067.
11. Kasazaki K, Yasukawa K, Sano H, Utsumi H. Noninvasive analysis of reactive oxygen species generated in NH4OH-induced gastric lesions of rats using a 300 MHz in vivo ESR technique. Free Radic Res. 2003;37(7):757–766. Doi: 10.1080/1071576031000103069.
12. Bolli R, Jeroudi MO, Patel BS, Aruoma OI, Halliwell B, Lai EK, McCay PB. Marked reduction of free radical generation and contractile dysfunction by antioxidant therapy begun at the time of reperfusion. Evidence that myocardial «stunning» is a manifestation of reperfusion injury. Circ. Res. 1989; 65(3):607–622. Doi: 10.1161/01.res.65.3.607.
13. Yellon DM, Downey JM. Preconditioning the myocardium: from cellular physiology to clinical cardiology. Physiol. Rev. 2003;83(4):1113–1151. Doi: 10.1152/physrev.00009.2003
14. Clement S, Campbell JM, Deng W, Guller A, Nisar S, Liu G, Wilson BC, Goldys EM. Mechanisms for tuning engineered nanomaterials to enhance radiation therapy of cancer. Adv Sci (Weinh). 2020;7(24):2003584. Doi: 10.1002/advs.202003584.
Review
For citations:
Sementsov A.S., Naryzhnaya N.V., Sirotina M.A., Maslov L.N. The role of reactive oxygen species in the infarct-limiting effect of hypoxic preconditioning. Regional blood circulation and microcirculation. 2021;20(2):87-91. (In Russ.) https://doi.org/10.24884/1682-6655-2021-20-2-87-91