Preview

Regional blood circulation and microcirculation

Advanced search

Intensity of thrombin formation and myocardial contractility in patients with ischemic heart disease after coronary stenting

https://doi.org/10.24884/1682-6655-2017-16-2-63-69

Abstract

Objective. To study the relationship between the intensity of thrombin formation, estimated by thrombin generation test (TGT) in platelet poor plasma, and myocardial contractility in patients with coronary artery disease (CAD) before and after percutaneous coronary intervention (PCI). Methods. The study included 75 patients with coronary artery disease aged between 40 to 75 years, who underwent primary PCI (10 patients) or elective (65 patients) procedure, as well as 35 individuals matched for age and sex with no clinical signs of CAD. We investigated the venous blood obtained before and after 6 and 12 months following PCI. In the same period, stress echocardiography was performed. The intensity of thrombin formation was assessed using a TGT, formed in platelet poor plasma and the modified reaction mixture by adding human recombinant thrombomodulin (rh-TM) to assess the degree of activation of the protein C system. Results. The association between stress echocardiography parameters characterizing myocardial contractile capacity (ejection fraction (EF) of the left ventricle and a wall motion abnormalities (WMAs)) and TGT parameters, reflecting the intensity (ETP and the Peak) of the thrombin formation rate (V), was identified to be more expressed in patients undergoing primary PCI. The presence of the reverse correlation between EF and WMAs and the percentage reduction of V, ETP and Peak after the addition of rh-TM, as well as a significant association of the EF and WMAs with TGT indicators staged with rh-TM demonstrates the role of protein C system in the changes of myocardial contractility. The intensity of thrombin generation was also associated with hypertension. Conclusion. It was determined that TGT parameters were strongly associated with stress echocardiography parameters. The changes in thrombin generation rate were most closely associated with left ventricular ejection fraction, index of wall motion abnormalities and arterial hypertension, including hypertensive reaction to physical activity.

About the Authors

G. A. Berezovskaya
Academician I. P. Pavlov First St. Petersburg State Medical University; Federal Almazov North-West Medical Research Centre
Russian Federation


E. S. Klokova
Federal Almazov North-West Medical Research Centre
Russian Federation


References

1. Kamphuisen P. W. Thrombogenicity in patients with percutaneous coronary artery intervention and dual antiplatelet treatment // Eur. Heart J. 2008. Vol. 29. № 14. Р. 1699-1700.

2. Gudmundsdyttir I. J., Lang N. N., Boon N. A. et al. Role of the Endothelium in the Vascular Effects of the Thrombin Receptor (Protease-Activated Receptor Type 1) in Humans // J. Am. Coll. Cardiol. 2008. № 51(18). Р. 1749-1756. doi: 10.1016/j.jacc.2007.12.047.

3. Godin D., Rioux F., Marceau F., Drapeau G. Mode of action of thrombin in the rabbit aorta // Br. J. Pharmacol. 1995. Vol. 115. № 6. Р. 903-908.

4. Hird R. B., Crawford F. A. Jr., Mukherjee R., Spinale F. G. Direct effects ofthrombin on myocyte contractile function // Ann. Thorac. Surg. 1995. № 9 (2). Р. 288-293.

5. DeBord L. Manual for stress echocardiography. Burlingame, CA, LWDC&E, 1993. 206 p.

6. Hemker H. C., Giesen P., Al Dieri R. et al. Calibratedautomated thrombin generation measurement in clotting plasma // Pathophysiol. Haemost. Thromb. 2003. № 33. Р. 4-15.

7. Dargaud Y., Trzeciak M. C., Bordet J. C. et al. Use of calibrated automated thrombinography +/- thrombomodulin to recognize the prothrombotic phenotype // Thromb. Haemost. 2006. № 96 (5). Р. 562-567.

8. Siller-Matula J. M., Schwameis M., Blann A. et al. Thrombin as a multi-functional enzyme. Focus on in vitro and in vivo effects // Thromb Haemost. 2011. № 106 (6). Р. 1020-1033.

9. Yang Z., Arnet U., Bauer E. et al. Thrombin-induced endothelium-dependent inhibition and direct activation of platelet-vessel wall interaction. Role of prostacyclin, nitric oxide, and thromboxane A2 // Circulation. 1994. Vol. 89. № 5. Р. 2266-2272.

10. Godin D., Rioux F., Marceau F., Drapeau G. Mode of action of thrombin in the rabbit aorta // Br. J. Pharmacol. 1995. Vol. 115. № 6. Р. 903-908.

11. Березовская Г. А., Петрищев Н. Н., Папаян Л. П. и др. Интенсивность образования тромбина у больных ишемической болезнью сердца после коронарного стентирования // Атеротромбоз. 2015. № 2. С. 19-27.

12. Berezovskaya G. A., Petrishchev N. N., Papajan L. P. et al. Intensity of thrombin formation in patients with ischemic heart disease after coronary stenting // Atherothrombosis. 2015. № 2. Р. 19-27.

13. Siller-Matula J. M., Bayer G., Bergmeister H. et al. An experimental model to study isolated effects of thrombin in vivo // Thromb Res. 2010. Vol. 126. № 5. Р. 454-461.

14. Lattova V., Prochazka M., Prochazkova J. et al. Preeclampsia and thrombin generation test// Ceska Gynekol. 2013. № 78(5). Р. 466-472.


Review

For citations:


Berezovskaya G.A., Klokova E.S. Intensity of thrombin formation and myocardial contractility in patients with ischemic heart disease after coronary stenting. Regional blood circulation and microcirculation. 2017;16(2):63-69. (In Russ.) https://doi.org/10.24884/1682-6655-2017-16-2-63-69

Views: 817


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-6655 (Print)
ISSN 2712-9756 (Online)