Possibilities of Echocardiography in Acute Form of New Coronavirus Infection COVID-19 and in Post-COVID Syndrome
https://doi.org/10.24884/1682-6655-2025-24-2-4-10
Abstract
The article analyzes scientific publications on the possibilities of echocardiographic examination in the acute period of COVID-19 and after the recovery of the new coronavirus infection. The use of echocardiography in the assessment of right ventricular dysfunction and pulmonary hypertension, left ventricular dysfunction, in acute coronary syndromes, in the diagnosis of effusion in the pericardial cavity, in the diagnosis of infectious endocarditis, as well as in post-COVID syndrome is reviewed. The prevalence of echocardiographic signs of heart damage and possible mechanisms of cardiac pathology are considered. It has been shown that echocardiographic analysis in patients with COVID-19 provides important information about the systolic and diastolic function of the left and right ventricles, myocardial remodeling, regional wall kinetics, the presence of effusion in the pericardial cavity, as well as valvular pathology in the context of possible infectious endocarditis. An analysis of the literature sources indicates the prognostic value of the myocardial strain of the right and left ventricles, assessed using the speckle tracking echocardiographic technique, especially in people with severe COVID-19. Echocardiography data can be useful in the diagnosis of such cardiovascular complications of the new coronavirus infection as acute coronary syndromes, heart failure, pericarditis, and infectious endocarditis. Echocardiography results are of diagnostic value both in the acute period and in people who have suffered from COVID-19, especially with the development of post-COVID syndrome. The authors concluded that long-term follow-up with echocardiographic monitoring of people who have suffered a new coronavirus infection is important, with the mandatory inclusion of systolic myocardial strain analysis of the left and right ventricles in the echocardiography protocol.
About the Authors
V. S. NikiforovRussian Federation
Nikiforov Viktor S. – MD, Professor, Department of Functional Diagnostics
41, Kirochnaya str., Saint Petersburg, 191015
V. V. Sklyarova
Russian Federation
Sklyarova Viktoriya V. – Postgraduate Student, Department of Functional Diagnostics
41, Kirochnaya str., Saint Petersburg, 191015
References
1. Dietz TK, Brondstater KN. Long COVID management: a mini review of current recommendations and underutilized modalities. Front Med (Lausanne). 2024; 11:1430444. https://doi.org/10.3389/fmed.2024.1430444.
2. Sawalha K, Abozenah M, Kadado AJ, et al. Systematic Review of COVID-19 Related Myocarditis: Insights on Management and Outcome. Cardiovasc Revasc Med. 2021;23:107- 113. https://doi.org/10.1016/j.carrev.2020.08.028.
3. The Novel Coronavirus Pneumonia Emergency Response Epidemiology Team. The Epidemiological Characteristics of an Outbreak of 2019 Novel Coronavirus Diseases (COVID-19) - China, 2020. China CDC Wkly. 2020;2(8):113-122.
4. Cenko E, Badimon L, Bugiardini R, et al. Cardiovascular disease and COVID-19: a consensus paper from the ESC Working Group on Coronary Pathophysiology & Microcirculation, ESC Working Group on Thrombosis and the Association for Acute CardioVascular Care (ACVC), in collaboration with the European Heart Rhythm Association (EHRA). Cardiovasc Res. 2021; 117(14):2705-2729. https://doi.org/10.1093/cvr/cvab298.
5. Carod-Artal FJ. Post-COVID-19 syndrome: epidemiology, diagnostic criteria and pathogenic mechanisms involved. Rev Neurol. 2021;72(11):384-396.
6. Shlyakho EV, Konradi AO, Villevalde SV, et al. Guidelines for the diagnosis and treatment of circulatory diseases in the context of the COVID-19 pandemic. Russian Journal of Cardiology. 2020;25(3):129-148. (In Russ.).
7. Dweck MR, Bularga A, Hahn RT, et al. Global evaluation of echocardiography in patients with COVID-19. Eur Heart J Cardiovasc Imaging. 2020;21(9):949-958. https://doi.org/10.1093/ehjci/jeaa178.
8. Szekely Y, Lichter Y, Taieb P, et al. Spectrum of Cardiac Manifestations in COVID-19: A Systematic Echocardiographic Study. Circulation. 2020;142(4):342-353. https://doi.org/10.1161/CIRCULATIONAHA.120.047971.
9. Wolters AEP, Wolters AJP, van Kraaij TDA, Kietselaer BLJH. Echocardiographic estimation of pulmonary hypertension in COVID-19 patients. Neth Heart J. 2022;30(11):510- 518. https://doi.org/10.1007/s12471-022-01702-x.
10. Wichmann D, Sperhake JP, Lütgehetmann M, et al. Autopsy findings and venous thromboembolism in patients with COVID-19: a prospective cohort study. Ann Intern Med. 2020; 173:268-277. https://doi.org/10.7326/M20-2003.
11. Middeldorp S, Coppens M, van Haaps TF, et al. Incidence of venous thromboembolism in hospitalized patients with COVID-19. J Thromb Haemost. 2020;18(8):1995-2002. https://doi.org/10.1111/jth.14888.
12. García-Cruz E, Manzur-Sandoval D, Rascón-Sabido R, et al. Critical care ultrasonography during COVID-19 pandemic: the ORACLE protocol. Echocardiography. 2020;37: 1353-1361. https://doi.org/10.1111/echo.14837.
13. Van den Heuvel FMA, Vos JL, Koop Y, et al. Cardiac function in relation to myocardial injury in hospitalised patients with COVID-19. Neth Heart J. 2020;28(7-8):410-417. https://doi.org/10.1007/s12471-020-01458-2.
14. Paternoster G, Bertini P, Innelli P, et al. Right ventricular dysfunction in patients with COVID-19: a systematic review and meta-analysis. J Cardiothorac Vasc Anesth. 2021; 35:3319-3324.
15. Wu C, Chen X, Cai Y, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med. 2020;180:934-943. https://doi.org/10.1001/jamainternmed.2020.0994.
16. Pagnesi M, Baldetti L, Beneduce A, et al. Pulmonary hypertension and right ventricular involvement in hospitalised patients with COVID-19. Heart. 2020;106:1324-1331. https://doi.org/10.1136/heartjnl-2020-317355.
17. Van Blydenstein SA, Omar S, Jacobson B, et al. Right heart echocardiography findings in hypoxic pneumonia patients during the COVID-19 pandemic in a South African population. Eur Heart J Imaging Methods Pract. 2023;1(2):qyad030. https://doi.org/10.1093/ehjimp/qyad030.
18. Corica B, Marra AM, Basili S, et al. Prevalence of right ventricular dysfunction and impact on all-cause death in hospitalized patients with COVID-19: a systematic review and meta-analysis. Sci Rep.2021;11:17774. https://doi.org/10.1038/s41598-021-96955-8.
19. Pimentel SLG, Nascimento BR, Franco J, et al. Bedside echocardiography to predict mortality of COVID-19 patients beyond clinical data: Data from the PROVAR-COVID study. Rev Soc Bras Med Trop. 2021;54:e03822021. https://doi.org/10.1590/0037-8682-0382-2021.
20. Mahmoud-Elsayed HM, Moody WE, Bradlow WM, et al. Echocardiographic findings in patients with COVID-19 pneumonia. Can J Cardiol. 2020;36:1203-1207. https://doi.org/10.1016/j.cjca.2020.05.030.
21. Li Y, Li H, Zhu S, et al. Prognostic value of right ventricular longitudinal strain in patients with COVID-19. JACC Cardiovasc Imaging 2020;13:2287-2299. https://doi.org/10.1016/j.jcmg.2020.04.014.
22. Kunal S, Gupta MD, Faizuddin M, et al. Serial evaluation of biventricular function in COVID-19 recovered patients using speckle tracking echocardiography. Indian Heart J. 2024;76(4): 297-302. https://doi.org/10.1016/j.ihj.2024.08.002.
23. Cosyns B, Lochy S, Luchian ML, et al. The role of cardiovascular imaging for myocardial injury in hospitalized COVID-19 patients. Eur Heart J Cardiovasc Imaging. 2020;21(7):709-714. https://doi.org/10.1093/ehjci/jeaa136.
24. Zheng YY, Ma YT, Zhang JY, Xie X. COVID-19 and the cardiovascular system. Nat Rev Cardiol. 2020;17:259-260. https://doi.org/10.1038/s41569-020-0360-5.
25. Furmanek S, Salunkhe V, Pahwa S, et al. Association between echocardiographic features, troponin levels, and survival time in hospitalized COVID-19 patients with cardiovascular events. J Anesth Transl Med. 2024;3(2):36-44. https://doi.org/10.1016/j.jatmed.2024.05.001.
26. Cenko E, Badimon L, Bugiardini R, et al. Cardiovascular disease and COVID-19: a consensus paper from the ESC Working Group on Coronary Pathophysiology & Microcirculation, ESC Working Group on Thrombosis and the Association for Acute CardioVascular Care (ACVC), in collaboration with the European Heart Rhythm Association (EHRA). Cardiovasc Res. 2021;117(14):2705-2729. https://doi.org/10.1093/cvr/cvab298.
27. Nikiforov VS, Nikishchenkova IuV. Modern possibilities of speckle tracking echocardioraphy in clinical practice. Rational Pharmacotherapy in Cardiology. 2017;13(2): 248-255. (In Russ.)
28. Bhatti H, Cordova Sanchez A, Dhungana R, et al. Left Ventricular Global Longitudinal Strain in Patients With COVID-19 Infection. Cureus. 2022;14(4):e23986. https://doi.org/10.7759/cureus.23986.
29. Hegde S, Shnoda M, Alkhadra Y, et al. Prevalence of abnormal left ventricular global longitudinal strain by speckle tracking echocardiography and its prognostic value in patients with COVID-19. Open Heart. 2024;11(1):e002397. https://doi.org/10.1136/openhrt-2023-002397.
30. Janus SE, Hajjari J, Karnib M, et al. Prognostic Value of Left Ventricular Global Longitudinal Strain in COVID-19. Am J Cardiol. 2020;131:134-136. https://doi.org/10.1016/j.amjcard.2020.06.053.
31. Wibowo A, Pranata R, Astuti A, et al. Left and right ventricular longitudinal strains are associated with poor outcome in COVID-19: a systematic review and metaanalysis. J Intensive Care. 2021;9(1):9. https://doi.org/10.1186/s40560-020-00519-3. PMID: 33436101. PMCID: PMC7802997.
32. Del Prete A, Conway F, Della Rocca DG, et al. COVID-19, Acute Myocardial Injury, and Infarction. Card Electrophysiol Clin. 2022;14(1):29-39. https://doi.org/10.1016/j.ccep.2021.10.004.
33. Triantafyllis AS, Sfantou D, Karapedi E, et al. Coronary Implications of COVID-19. Med Princ Pract. 2025;34(1):1-12. https://doi.org/10.1159/000541553.
34. Stefanini GG, Montorfano M, Trabattoni D, et al. ST-Elevation Myocardial Infarction in Patients With COVID-19: Clinical and Angiographic Outcomes. Circulation. 2020;141(25):2113-2116. https://doi.org/10.1161/CIRCULATIONAHA.120.047525.
35. Pogran E, Zweiker D, Gargiulo L, et al. Takotsubo syndrome before and during the COVID-19 pandemic in Austria: a retrospective cohort study (TOSCA-19). ESC Heart Fail. 2023;10(6):3667-3676. https://doi.org/10.1002/ehf2.14536. Epub 2023 Oct 6. PMID: 37803874. PMCID: PMC10682936.
36. Zuin M, Mugnai G, Anselmi M, et al. Takotsubo Syndrome during COVID-19 Pandemic in the Veneto Region, Italy. Viruses. 2022;14(9):1971. https://doi.org/10.3390/v14091971.
37. Titus A, Sattar Y, Patel N, et al. In-Hospital Outcomes of Takotsubo Cardiomyopathy During the COVID-19 Pandemic: Propensity Matched National Cohort. Curr Probl Cardiol. 2023; 48(5):101598. https://doi.org/10.1016/j.cpcardiol. 2023.101598.
38. Kamath S, Gomah MT, Stepman G, et al. COVID19-Associated Acute Myocarditis: Risk Factors, Clinical Outcomes, and Implications for Early Detection and Management. Cureus. 2023;15(9):e44617. https://doi.org/10.7759/cureus.44617.
39. Saraç İ, Aydın SŞ, Özmen M, et al. Prevalence, Risk Factors, Prognosis, and Management of Pericardial Effusion in COVID-19. J Cardiovasc Dev Dis. 2023;10(9):368. https://doi.org/10.3390/jcdd10090368.
40. Nguyen NN, Dudouet P, Dhiver C, Gautret P. Pericarditis related to post-acute COVID infection: A case report and review of the literature. Acta Microbiol Immunol Hung. 2023;70(2):100-110. https://doi.org/10.1556/030.2023.02055.
41. Carubbi F, Alunno A, Leone S, et al. Pericarditis after SARS-CoV-2 Infection: Another Pebble in the Mosaic of Long COVID? Viruses. 2021;13(10):1997. https://doi.org/10.3390/v13101997.
42. Goncalves R, Meel R. An overview of infective endocarditis in the context of COVID-19 pneumonia. Eur Heart J Imaging Methods Pract. 2023;1(2):qyad024. https://doi.org/10.1093/ehjimp/qyad024.
43. Bajdechi M, Vlad ND, Dumitrascu M, et al. Bacterial endocarditis masked by COVID-19: A case report. Exp Ther Med. 2022;23(2):186. https://doi.org/10.3892/etm.2021.11109.
44. Quintero-Martinez JA, Hindy JR, Mahmood M, et al. A clinical profile of infective endocarditis in patients with recent COVID-19: A systematic review. Am J Med Sci. 2022;364(1): 16-22. https://doi.org/10.1016/j.amjms.2022.02.005.
45. Maria LFBS, Batista JET, Wachira VK, et al. Factors Associated with Post-COVID Cardiac Conditions and Potential Prognostic Factors: A Systematic Review. Life (Basel). 2025;15(3):388. https://doi.org/10.3390/life15030388.
46. Rodzina A, Karzhaneuskaya N, Haurylenka D, et al. Some features of infectious endocarditis during the pandemic COVID-19 infection. Clinical infectology and parasitology. 2023;12(1):33-41. (In Russ.)
47. Tomar D, Kapoor A, Hashim Z, et al. Use of strain imaging to detect subtle myocardial involvement in post COVID-19 patients: An Indian perspective. Indian Heart J. 2024;76(5):309-314. https://doi.org/10.1016/j.ihj.2024.09.003.
48. Sharma D, Rohila A, Deora S, et al. Cardiac assessment of patients during post COVID-19 recovery phase: a prospective observational study. Glob Cardiol Sci Pract. 2022;2022(3): e202218. https://doi.org/10.21542/gcsp.2022.18. PMID: 36660166. PMCID: PMC9840129.
49. Chaturvedi H, Issac R, Sharma SK, Gupta R. Progressive left and right heart dysfunction in coronavirus disease-19: Prospective echocardiographic evaluation. Eur Heart J Cardiovasc Imaging. 2022;23(3):319-325. https://doi.org/10.1093/ehjci/jeab268.
50. Caiado LDC, Azevedo NC, Azevedo RRC, Caiado BR. Cardiac involvement in patients recovered from COVID-19 identified using left ventricular longitudinal strain. J Echocardiogr. 2022; 20(1):51-56. https://doi.org/10.1007/s12574-021-00555-4.
51. Özer S, Candan L, Özyıldız AG, Turan OE. Evaluation of left ventricular global functions with speckle tracking echocardiography in patients recovered from COVID-19. Int J Cardiovasc Imaging. 2021;37(7):2227-2233. https://doi.org/10.1007/s10554-021-02211-5.
Review
For citations:
Nikiforov V.S., Sklyarova V.V. Possibilities of Echocardiography in Acute Form of New Coronavirus Infection COVID-19 and in Post-COVID Syndrome. Regional blood circulation and microcirculation. 2025;24(2):4-10. (In Russ.) https://doi.org/10.24884/1682-6655-2025-24-2-4-10