Preview

Regional blood circulation and microcirculation

Advanced search

Role of Hyperlipidemia in the Development of Endothelial Dysfunction

https://doi.org/10.24884/1682-6655-2025-24-2-69-75

Abstract

The production of powerful vasoconstrictors (endoperoxides, endothelins) and cytokines such as tumor necrosis factor alpha (TNF-α) that suppress nitric oxide (NO) synthesis play a key role in the development of endothelial dysfunction, which leads to disruption of vasorelaxation processes. To date, sufficient data have been accumulated showing that the development of endothelial dysfunction, caused, in particular, by quantitative and qualitative disruption of lipid homeostasis, is of paramount importance in the progression of systemic vascular pathology. The effect of oxidized low-density lipoproteins (oxy-LDL) on the vascular wall initiates the development of endothelial insufficiency and the formation of an atherosclerotic plaque. Oxy-LDL also mediates vasoconstriction of coronary vessels by reducing eNOS, inhibiting NO and increasing endothelin production. The development of hyperlipidemia initiates a proliferative response of endothelial cells with subsequent changes in their functional activity and expression of proteins of the “proinflammatory endothelial phenotype” that play an important role in regulating the local inflammatory process. At the same time, hyperexpression of cell adhesion molecules VCAM-1, ICAM-1 and E-selectin is a decisive step in increasing the adhesive activity of monocytes and their migration into the vascular wall. An important link in the formation of endothelial dysfunction in hyperlipidemia, according to many authors, is a change in the amount and activity of endothelial nitric oxide synthase (eNOS) and, as a consequence, a violation of NO production by the endothelium.

About the Authors

M. V. Chernoruckiy
Tver State Medical University
Russian Federation

Chernoruckiy Michail V. – Assistant, Department of Pathological physiology

4, Sovetskaya str., Tver, 170100



N. E. Shcheglova
Tver State Medical University
Russian Federation

Shcheglova Natalia E. – Candidate of medical sciences (PhD), Department of Pathological physiology

4, Sovetskaya str., Tver, 170100



O. V. Volkova
Tver State Medical University
Russian Federation

Volkova Olga V. – Candidate of Medical Sciences (PhD), Department of Pathological physiology

4, Sovetskaya str., Tver, 170100



References

1. Pizov AV, Pizov NA, Skachkova OA, Pizovа NV. Endothelial function in normal and pathological conditions. Medical Council. 2019;(6):154-159. (In Russ.). https://doi.org/10.21518/2079-701X-2019-6-154-159.

2. Yupatov EYu, Kurmanbaev TE, Timoshkova YuL. Understanding endothelial function and dysfunction: state-of-the-art (a review). RMJ. 2022;3:20-23. (In Russ.).

3. Stepanova TV, Ivanov AN, Tereshkina NE, et al. Markers of endothelial dysfunction: pathogenetic role and diagnostic significance. Russian Clinical Labora tory Diagnostics. 2019;64(1):34-41. (In Russ.).https://doi.org/10.18821/0869-2084-2018-63-34-41.

4. Vasina LV, Petrishchev NN, Vlasov TD. Markers of endothelial dysfunction. Regional blood circulation and microcirculation. 2017;16(1):4-15. (In Russ.). https://doi.org/10.24884/1682-6655-2017-16-1-4-15.

5. Kotlyarov S. Diversity of Lipid Function in Atherogenesis: A Focus on Endothelial Mechanobiology. Int J Mol Sci. 2021;22(21):11545. https://doi.org/10.3390/ijms222111545.

6. Jamwal S, Sharma S. Vascular endothelium dysfunction: a conservative target in metabolic disorders. Inflamm Res. 2018;67(5):391-405. https://doi.org/10.1007/s00011-018-1129-8.

7. Xu S, Ilyas I, Little PJ, Li H, et al. Endothelial Dysfunction in Atherosclerotic Cardiovascular Diseases and Beyond: From Mechanism to Pharmacotherapies. Pharmacol Rev. 2021;73(3):924-967. https://doi.org/10.1124/pharmrev.120.000096.

8. Dunaevskaya SS, Vinnik YuS. Development of endothelial dysfunction at an obliterating atherosclerosis of vessels of the lower extremities and markers of prediction of a course of a disease. Bulletin of Siberian Medicine. 2017;16(1):108-118. (In Russ.). https://doi.org/10.20538/1682-0363-2017-1-108–118.

9. Zakharyan EA, Ageeva ES, Shramko YuI, et al. A modern view on the diagnostic role of endothelial dysfunction biomarkers and the possibilities of its correction. Complex Issues of Cardiovascular Diseases. 2022;11(4S):194-207. (In Russ.). https://doi.org/10.17802/2306-1278-2022-11-4S-194-207.

10. Stryukova EV, Ragino YuI, Maksimov VN. Biochemical markers of endothelial dysfunction and hemostasis in atherosclerosis and the genes responsible for their regulation.Ateroscleroz. 2017;13(1):49-56. (In Russ.).

11. Higashi Y, Noma K, Yoshizumi M, Kihara Y. Endothelial function and oxidative stress in cardiovascular diseases. Circ J. 2009;73(3):411-8. https://doi.org/10.1253/circj.cj-08-1102.

12. Lloyd-Jones DM, Wilson PW, Larson MG, et al. Lifetime risk of coronary heart disease by cholesterol levels at selected ages. Arch Intern Med. 2003;163(16):1966-72. https://doi.org/10.1001/archinte.163.16.1966.

13. Yusuf S, Hawken S, Ounpuu S, et al. INTERHEART Study Investigators. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364(9438):937-52. https://doi.org/10.1016/S0140-6736(04)17018-9.

14. Gliozzi M, Scicchitano M, Bosco F, et al. Modulation of Nitric Oxide Synthases by Oxidized LDLs: Role in Vascular Inflammation and Atherosclerosis Development. Int J Mol Sci. 2019;20(13):3294. https://doi.org/10.3390/ijms20133294.

15. Kita T, Kume N, Minami M, et al. Role of oxidized LDL in atherosclerosis. Ann N Y Acad Sci. 2001;947:199-205; discussion 205-6. https://doi.org/10.1111/j.1749-6632.2001.tb03941.x.

16. Ross R. Atherosclerosis - an inflammatory disease. N Engl J Med. 1999;340(2):115-26. https://doi.org/10.1056/NEJM199901143400207.

17. Steinberg D. Arterial metabolism of lipoproteins in relation to atherogenesis. Ann N Y Acad Sci. 1990;598:125-35. https://doi.org/10.1111/j.1749-6632.1990.tb42284.x.

18. Tsimikas S. Oxidized low-density lipoprotein biomarkers in atherosclerosis. Curr Atheroscler Rep. 2006;8(1):55-61. https://doi.org/10.1007/s11883-006-0065-1.

19. Kaplan M, Aviram M. Oxidized low density lipoprotein: atherogenic and proinflammatory characteristics during macrophage foam cell formation. An inhibitory role for nutritional antioxidants and serum paraoxonase. Clin Chem Lab Med. 1999;37(8):777-87. https://doi.org/10.1515/CCLM.1999.118.

20. Parthasarathy S, Fong LG, Quinn MT, Steinberg D. Oxidative modification of LDL: comparison between cellmediated and copper-mediated modification. Eur Heart J. 1990;11 Suppl E:83-7. https://doi.org/10.1093/eurheartj/11.suppl_e.83. PMID: 2121485.

21. Yuhanna IS, Zhu Y, Cox BE, et al. High-density lipoprotein binding to scavenger receptor-BI activates endothelial nitric oxide synthase. Nat Med. 2001;7(7):853-7. https://doi.org/10.1038/89986.

22. Navab M, Hama SY, Cooke CJ, et al. Normal high density lipoprotein inhibits three steps in the formation of mildly oxidized low density lipoprotein: step 1. J Lipid Res. 2000;41(9):1481-94. PMID: 10974056.

23. Riwanto M, Landmesser U. High density lipoproteins and endothelial functions: mechanistic insights and alterations in cardiovascular disease. J Lipid Res. 2013;54(12):3227-43. https://doi.org/10.1194/jlr.R037762.

24. Brewer HB Jr, Remaley AT, Neufeld EB, et al. Regulation of plasma high-density lipoprotein levels by the ABCA1 transporter and the emerging role of high-density lipoprotein in the treatment of cardiovascular disease. Arterioscler Thromb Vasc Biol. 2004;24(10):1755-60. https://doi.org/10.1161/01.ATV.0000142804.27420.5b.

25. McGillicuddy FC, de la Llera Moya M, Hinkle CC, et al. Inflammation impairs reverse cholesterol transport in vivo. Circulation. 2009;119(8):1135-45. https://doi.org/10.1161/CIRCULATIONAHA.108.810721.

26. Femlak M, Gluba-Brzózka A, Ciałkowska-Rysz A, Rysz J. The role and function of HDL in patients with diabetes mellitus and the related cardiovascular risk. Lipids Health Dis. 2017;16(1):207. https://doi.org/10.1186/s12944-017-0594-3.

27. Wong NKP, Nicholls SJ, Tan JTM, Bursill CA. The Role of High-Density Lipoproteins in Diabetes and Its Vascular Complications. Int J Mol Sci. 2018;19(6):1680. https://doi.org/10.3390/ijms19061680.

28. Genua I, Ramos A, Caimari F, et al. Effects of Bariatric Surgery on HDL Cholesterol. Obes Surg. 2020;30(5):1793- 1798. https://doi.org/10.1007/s11695-020-04385-8.

29. Piché ME, Tardif I, Auclair A, Poirier P. Effects of bariatric surgery on lipid-lipoprotein profile. Metabolism. 2021;115:154441. https://doi.org/10.1016/j.metabol.2020.154441.

30. Chiesa ST, Charakida M. High-Density Lipoprotein Function and Dysfunction in Health and Disease. Cardiovasc Drugs Ther. 2019;33(2):207-219. https://doi.org/10.1007/s10557-018-06846-w.

31. Gradinaru D, Borsa C, Ionescu C, Prada GI. Oxidized LDL and NO synthesis - Biomarkers of endothelial dysfunction and ageing. Mech Ageing Dev. 2015;151:101-13. https://doi.org/10.1016/j.mad.2015.03.003.

32. Maiolino G, Rossitto G, Caielli P, et al. The role of oxidized low-density lipoproteins in atherosclerosis: the mythsand the facts. Mediators Inflamm. 2013;2013:714653. https:// doi.org/10.1155/2013/714653.

33. Pirillo A, Norata GD, Catapano AL. LOX-1, OxLDL, and atherosclerosis. Mediators Inflamm. 2013;2013:152786. https://doi.org/10.1155/2013/152786.

34. Xu S, Ogura S, Chen J, et al. LOX-1 in atherosclerosis: biological functions and pharmacological modifiers. Cell Mol Life Sci. 2013;70(16):2859-72. https://doi.org/10.1007/s00018-012-1194-z.

35. Fatenkov OV, Simerzin VV, Gagloeva IV, et al. Endothelial dysfunction as predictor of subclinical and manifest atherosclerosis. Science and Innovations in Medicine. 2018;3(3):39-46. (In Russ.). https:// doi.org/10.35693/2500-1388-2018-0-3-39-46.

36. Samolyuk MO, Grigorieva NYu. Evaluation of endothelial dysfunction and the possibility of its correction at the present stage in patients with cardiovascular diseases. Kardiologiia. 2019;59(3S):4-9. (In Russ.). https://doi.org/10.18087/cardio.2524.

37. Radaykina O. G., Vlasov A. P., Myshkina N.A. Role of endothelial dysfunction in cardiovascular system pathology. Ulyanovsk Medico-biological Journal. 2018;4:8-17. (In Russ.). https://doi.org/10.23648/UMBJ.2018.32.22685.

38. Feron O, Dessy C, Moniotte S, et al. Hypercholesterolemia decreases nitric oxide production by promoting the interaction of caveolin and endothelial nitric oxide synthase. J Clin Invest. 1999;103(6):897-905. https://doi.org/10.1172/JCI4829.

39. Fancher IS, Levitan I. Membrane Cholesterol Interactions with Proteins in Hypercholesterolemia-Induced Endothelial Dysfunction. Curr Atheroscler Rep. 2023;25(9):535-541. https://doi.org/10.1007/s11883-023-01127-w.

40. Davydova EV, Zurochka AV, Zurochka VA, Altman DS. Role of lipid metabolic disturbances for the mechanisms of immune dysregulation and endothelial dysfunction in early forms of chronic cerebrovascular insufficiency. Medical Immunology. 2019;21(6):1043-1054. (In Russ.). https://doi.org/10.15789/1563-0625-2019-6-1043-1054.

41. Vlasov TD, Nesterovich II, Shimanski DA. Endothelial Dysfunction: from the Particular to the General. Return to the «Old Paradigm»? Regional hemodynamics and microcirculation. 2019;18(2):19-27. (In Russ.). https://doi.org/10.24884/1682-6655-2019-18-2-19-27.


Review

For citations:


Chernoruckiy M.V., Shcheglova N.E., Volkova O.V. Role of Hyperlipidemia in the Development of Endothelial Dysfunction. Regional blood circulation and microcirculation. 2025;24(2):69-75. (In Russ.) https://doi.org/10.24884/1682-6655-2025-24-2-69-75

Views: 90


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-6655 (Print)
ISSN 2712-9756 (Online)